Inferring within-host bottleneck size: A Bayesian approach.

Abstract

Recent technical developments in microbiology have led to new discoveries on the within-host dynamics of bacterial infections in laboratory animals. In particular, they have highlighted the importance of stochastic bottlenecks at the onset of invasive disease. A number of approaches exist for bottleneck-size estimation with respect to within-host bacterial infections; however, some are more appropriate than others under certain circumstances. A Bayesian comparison of several approaches is made in terms of the availability of isogenic multitype bacteria (e.g., WITS), knowledge of post-bottleneck dynamics, and the suitability of dilution with monotype bacteria. A sampling approach to bottleneck-size estimation is also introduced. The results are summarised by a guiding flowchart, which we hope will promote the use of quantitative models in microbiology to refine the analysis of animal experiment data

    Similar works