53 research outputs found

    The Jahn-Teller active fluoroperovskites ACrF3A\mathrm{CrF_3} A=Na+,K+A=\mathrm{Na^+},\mathrm{K^+}: thermo- and magneto optical correlations as function of the AA-site

    Get PDF
    Chromium (II) fluoroperovskites ACrF3(A=Na+,K+)A\mathrm{CrF_3}(A\mathrm{=Na^+,K^+}) are strongly correlated Jahn-Teller active materials at low temperatures. In this paper, we examine the role that the AA-site ion plays in this family of fluoroperovskites using both experimental methods (XRD, optical absorption spectroscopy and magnetic fields) and DFT simulations. Temperature-dependent optical absorption experiments show that the spin-allowed transitions E2E_2 and E3E_3 only merge completely for AA= Na at 2 K. Field-dependent optical absorption measurements at 2 K show that the oscillating strength of the spin-allowed transitions in NaCrF3\mathrm{NaCrF_3} increases with increasing applied field. Direct magneto-structural correlations which suppress the spin-flip transitions are observed for KCrF3{\rm KCrF_3} below its Ne\'el temperature. In NaCrF3{\rm NaCrF_3} the spin-flip transitions vanish abruptly below 9 K revealing magneto-optical correlations not linked to crystal structure changes. This suggests that as the long range ordering is reduced local JT effects in the individual CrF64{\rm CrF_6^{4-}} octahedra take control of the observed behavior. Our results show clear deviation from the pattern found for the isoelectronic AxMnF3+xA_x{\rm MnF}_{3+x} system. The size of the AA-site cation is shown to be central in dictating the physical properties and phase transitions in ACrF3A{\rm CrF}_3, opening up the possibility of varying the composition to create novel states of matter with tuneable properties

    A model for the formation energies of alanates and boranates

    Get PDF
    We develop a simple model for the formation energies (FEs) of alkali and lkaline earth alanates and boranates, based upon ionic bonding between metal cations and (AlH4)- or (BH4)- anions. The FEs agree well with values obtained from first principles calculations and with experimental FEs. The model shows that details of the crystal structure are relatively unimportant. The small size of the (BH4)- anion causes a strong bonding in the crystal, which makes boranates more stable than alanates. Smaller alkali or alkaline earth cations do not give an increased FE. They involve a larger ionization potential that compensates for the increased crystal bonding.Comment: 3 pages, 2 figure

    Energetics and Vibrational States for Hydrogen on Pt(111)

    Get PDF
    We present a combination of theoretical calculations and experiments for the low-lying vibrational excitations of H and D atoms adsorbed on the Pt(111) surface. The vibrational band states are calculated based on the full three-dimensional adiabatic potential energy surface obtained from first principles calculations. For coverages less than three quarters of a monolayer, the observed experimental high-resolution electron peaks at 31 and 68meV are in excellent agreement with the theoretical transitions between selected bands. Our results convincingly demonstrate the need to go beyond the local harmonic oscillator picture to understand the dynamics of this system.Comment: In press at Phys. Rev. Lett - to appear in April 200

    A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+

    Get PDF
    This roadmap presents the transformational research ideas proposed by “BATTERY 2030+,” the European large-scale research initiative for future battery chemistries. A “chemistry-neutral” roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this “chemistry neutral” approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created

    Structure and stability of possible new alanates

    No full text
    Three new stable bialkalimetallic alanates are predicted by accurate density functional calculations: \chem{K_2LiAlH_6}, \chem{K_2NaAlH_6}, and \chem{KNa_2AlH_6}. Their detailed crystal structure has been determined by a systematic search through a large part of the probable space of crystal structures. They are thermodynamically stable at 0\un{K} compared to their monoalkali constituents by 9 to 49\un{kJ/mol} formula units. The crystal structure of the already known alanates \chem{Li_3AlH_6}, \chem{Na_3AlH_6}, \chem{K_3AlH_6}, and \chem{LiNa_2AlH_6} were also determined, and found to be in excellent agreement with experimental data where available. The two last bialkali alanates studied, \chem{Li_2NaAlH_6} and \chem{KLi_2AlH_6}, were found to be unstable

    Reversed surface segregation in palladium–silver alloys due to hydrogen adsorption, Surface Science 602

    No full text
    a b s t r a c t It is well known that silver segregates to the surface of pure and ideal Pd-Ag alloy surfaces. By first-principles band-structure calculations it is shown in this paper how this may be changed when hydrogen is adsorbed on a Pd-Ag(1 1 1) surface. Due to hydrogen binding more strongly to palladium than to silver, there is a clear energy gain from a reversal of the surface segregation. Hydrogen-induced segregation may provide a fundamental explanation for the hydrogen or reducing treatments that are required to activate hydrogen-selective membrane or catalyst performance

    This content has been downloaded from IOPscience. Please scroll down to see the full text. Prediction of solute diffusivity in Al assisted by first-principles molecular dynamics Prediction of solute diffusivity in Al assisted by first-principles molecular

    No full text
    Abstract Ab initio calculations of the solid-state diffusivity of solute atoms in bulk aluminium have previously been based on transition state theory (TST), employing transition state searches and systematic assessments of single jumps together with appropriate models of jump frequencies and correlation factors like the five-frequency model. This work compared TST benchmark predictions of diffusivities with first-principles molecular dynamics (FPMD). The TST calculations were performed at unprecedented high precision, including the temperature dependent entropy of vacancy formation which has not been included in previous studies of diffusion in Al; this led to improved agreement with experimental data. It was furthermore demonstrated that FPMD can yield sufficient statistics to predict the frequency of single jumps, and FPMD was used to successfully predict the macroscopic diffusivity of Si in Al. The latter is not possible in systems with higher activation energies, but it was demonstrated that FPMD in such cases can identify which jumps are prevalent for a given defect configuration. Thus, information from FPMD can be used to simplify the calculation of correlation terms, prefactors and effective transition barriers with TST significantly. This can be particularly important for the study of more complicated defect configurations, where the number of distinct jumps rapidly increases to be intractable by systematic methods
    corecore