113 research outputs found
What causes the decrease in haematocrit during egg production?
1. Anaemia has been reported in wild animals, typically associated with traumatic events or ill health. However, female birds routinely become \u27anaemic\u27 during egg-laying; we sought to determine the causes of this reduction in haematocrit. 2. Haematocrit in female European Starlings (Sturnus vulgaris Linnaeus) decreased between pre-breeding and egg-laying in 3 out of 4 years (the decrease was marginally non-significant in the fourth year). This was independent of changes in ambient temperature altering the metabolic requirements for thermoregulation. 3. There was a positive relationship between haematocrit and plasma levels of the yolk precursor vitellogenin among egg-laying birds, supporting the hypothesis that the initial reduction in haematocrit is caused by increased blood volume associated with osmoregulatory adjustments to elevated levels of yolk precursors. 4. However, haematocrit did not always recover upon cessation of egg production, remaining low a.t clutch completion (2 of 4 years), incubation (1 of 2 years) and chick rearing (1 of 4 years), suggesting an additional cause of the prolonged reduction in haematocrit. 5. Given the magnitude and prolonged nature of the changes in haematocrit we report, and the interannual variation in haematocrit even during chick-rearing (47-54%), we suggest that \u27anaemia\u27 associated with egg production might have implications for aerobic performance during later stages of breeding
What causes the decrease in haematocrit during egg production?
1. Anaemia has been reported in wild animals, typically associated with traumatic events or ill health. However, female birds routinely become \u27anaemic\u27 during egg-laying; we sought to determine the causes of this reduction in haematocrit. 2. Haematocrit in female European Starlings (Sturnus vulgaris Linnaeus) decreased between pre-breeding and egg-laying in 3 out of 4 years (the decrease was marginally non-significant in the fourth year). This was independent of changes in ambient temperature altering the metabolic requirements for thermoregulation. 3. There was a positive relationship between haematocrit and plasma levels of the yolk precursor vitellogenin among egg-laying birds, supporting the hypothesis that the initial reduction in haematocrit is caused by increased blood volume associated with osmoregulatory adjustments to elevated levels of yolk precursors. 4. However, haematocrit did not always recover upon cessation of egg production, remaining low a.t clutch completion (2 of 4 years), incubation (1 of 2 years) and chick rearing (1 of 4 years), suggesting an additional cause of the prolonged reduction in haematocrit. 5. Given the magnitude and prolonged nature of the changes in haematocrit we report, and the interannual variation in haematocrit even during chick-rearing (47-54%), we suggest that \u27anaemia\u27 associated with egg production might have implications for aerobic performance during later stages of breeding
The Impact of Delayed Treatment of Uncomplicated \u3ci\u3eP. falciparum\u3c/i\u3e Malaria on Progression to Severe Malaria: A Systematic Review and a Pooled Multicentre Individual-Patient Meta-Analysis
BACKGROUND: Delay in receiving treatment for uncomplicated malaria (UM) is often reported to increase the risk of developing severe malaria (SM), but access to treatment remains low in most high-burden areas. Understanding the contribution of treatment delay on progression to severe disease is critical to determine how quickly patients need to receive treatment and to quantify the impact of widely implemented treatment interventions, such as \u27test-and-treat\u27 policies administered by community health workers (CHWs). We conducted a pooled individual-participant meta-analysis to estimate the association between treatment delay and presenting with SM.
METHODS AND FINDINGS: A search using Ovid MEDLINE and Embase was initially conducted to identify studies on severe Plasmodium falciparum malaria that included information on treatment delay, such as fever duration (inception to 22nd September 2017). Studies identified included 5 case-control and 8 other observational clinical studies of SM and UM cases. Risk of bias was assessed using the Newcastle-Ottawa scale, and all studies were ranked as \u27Good\u27, scoring ≥7/10. Individual-patient data (IPD) were pooled from 13 studies of 3,989 (94.1% aged \u3c15 years) SM patients and 5,780 (79.6% aged \u3c15 years) UM cases in Benin, Malaysia, Mozambique, Tanzania, The Gambia, Uganda, Yemen, and Zambia. Definitions of SM were standardised across studies to compare treatment delay in patients with UM and different SM phenotypes using age-adjusted mixed-effects regression. The odds of any SM phenotype were significantly higher in children with longer delays between initial symptoms and arrival at the health facility (odds ratio [OR] = 1.33, 95% CI: 1.07-1.64 for a delay of \u3e24 hours versus ≤24 hours; p = 0.009). Reported illness duration was a strong predictor of presenting with severe malarial anaemia (SMA) in children, with an OR of 2.79 (95% CI:1.92-4.06; p \u3c 0.001) for a delay of 2-3 days and 5.46 (95% CI: 3.49-8.53; p \u3c 0.001) for a delay of \u3e7 days, compared with receiving treatment within 24 hours from symptom onset. We estimate that 42.8% of childhood SMA cases and 48.5% of adult SMA cases in the study areas would have been averted if all individuals were able to access treatment within the first day of symptom onset, if the association is fully causal. In studies specifically recording onset of nonsevere symptoms, long treatment delay was moderately associated with other SM phenotypes (OR [95% CI] \u3e3 to ≤4 days versus ≤24 hours: cerebral malaria [CM] = 2.42 [1.24-4.72], p = 0.01; respiratory distress syndrome [RDS] = 4.09 [1.70-9.82], p = 0.002). In addition to unmeasured confounding, which is commonly present in observational studies, a key limitation is that many severe cases and deaths occur outside healthcare facilities in endemic countries, where the effect of delayed or no treatment is difficult to quantify.
CONCLUSIONS: Our results quantify the relationship between rapid access to treatment and reduced risk of severe disease, which was particularly strong for SMA. There was some evidence to suggest that progression to other severe phenotypes may also be prevented by prompt treatment, though the association was not as strong, which may be explained by potential selection bias, sample size issues, or a difference in underlying pathology. These findings may help assess the impact of interventions that improve access to treatment
Projected health impact of post-discharge malaria chemoprevention among children with severe malarial anaemia in Africa.
Children recovering from severe malarial anaemia (SMA) remain at high risk of readmission and death after discharge from hospital. However, a recent trial found that post-discharge malaria chemoprevention (PDMC) with dihydroartemisinin-piperaquine reduces this risk. We developed a mathematical model describing the daily incidence of uncomplicated and severe malaria requiring readmission among 0-5-year old children after hospitalised SMA. We fitted the model to a multicentre clinical PDMC trial using Bayesian methods and modelled the potential impact of PDMC across malaria-endemic African countries. In the 20 highest-burden countries, we estimate that only 2-5 children need to be given PDMC to prevent one hospitalised malaria episode, and less than 100 to prevent one death. If all hospitalised SMA cases access PDMC in moderate-to-high transmission areas, 38,600 (range 16,900-88,400) malaria-associated readmissions could be prevented annually, depending on access to hospital care. We estimate that recurrent SMA post-discharge constitutes 19% of all SMA episodes in moderate-to-high transmission settings
mrc-ide/deterministic-malaria-model: nets_paper
An R package of the Imperial College malaria full transmission model
- …