22 research outputs found

    Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries

    Get PDF
    Based on information provided the embargo period/end date is 12 monthsBased on information provided the embargo period/end date is 12 month

    Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density

    Get PDF
    We have discovered a very simple method to address the challenge associated with the low volumetric energy density of free-standing carbon nanofiber electrodes for supercapacitors by electrospinning Kraft lignin in the presence of an oxidizing salt (NaNO₃) and subsequent carbonization in a reducing atmosphere. The presence of the oxidative salt decreases the diameter of the resulting carbon nanofibers doubling their packing density from 0.51 to 1.03 mg cm⁻² and hence doubling the volumetric energy density. At the same time, the oxidative NaNO₃ salt eletrospun and carbonized together with lignin dissolved in NaOH acts as a template to increase the microporosity, thus contributing to a good gravimetric energy density. By simply adjusting the process parameters (amount of oxidizing/reducing agent), the gravimetric and volumetric energy density of the resulting lignin free-standing carbon nanofiber electrodes can be carefully tailored to fit specific power to energy demands. The areal capacitance increased from 147 mF cm⁻² in the absence of NaNO₃ to 350 mF cm⁻² with NaNO₃ translating into a volumetric energy density increase from 949 μW h cm⁻³ without NaNO₃ to 2245 μW h cm⁻³ with NaNO₃. Meanwhile, the gravimetric capacitance also increased from 151 F g⁻¹ without to 192 F g⁻¹ with NaNO

    Thermal Properties of Wood-Plastic Composites Prepared from Hemicellulose-extracted Wood Flour

    No full text
    Hemicellulose of Southern Yellow Pine wood spices was extracted by pressurized hot water at three different temperatures: 140°C, 155°C and 170°C. Compounding with PP (polypropylene) was performed by extrusion after preparing wood flour and sieving to determine its mesh size. The ratio of wood to polymer was 50:50 based on oven-dry weight of wood flour. All extraction treatments and control samples were compounded under two sets of conditions, without and with 2% MAPP as coupling agent. Injection molding was used to make tensile test samples (dogbone) from the pellets made by extrusion. Thermal properties of wood-plastic composites were studied by TGA and DSC while the thermal stability of pretreated wood flours, PP and MAPP were studied by TGA as well. The greater weight loss of wood materials was an indication that higher treatment temperature increases the extractability of hemicellulose. The removal of hemicellulose by extraction improves thermal stability of wood flour, especially for extraction at 170°C. Wood-plastic composites made from extracted fibers at 170°C showed the highest thermal stability. Coupling agent did not have a significant effect on thermal stability but it improved the degree of crystallinity of the composites.Surface roughness of wood fiber increased after treatment. Extraction of hemicellulose increased the degree of crystallinity but it was not significant except for samples from treated wood flour at 170°C and with MAPP
    corecore