53 research outputs found
An accurate study of the dynamics of the C plus OH reaction on the second excited 1(4)A '' potential energy surface
The dynamics of the C(P-3)+OH(X-2 Pi) -> CO(a(3)Pi)+H(S-2) on its second excited potential energy surface, 1(4)A '', have been investigated in detail by means of an accurate quantum mechanical (QM) time-dependent wave packet (TDWP) approach. Reaction probabilities for values of the total angular momentum J up to 50 are calculated and integral cross sections for a collision energy range which extends up to 0.1 eV are shown. The comparison with quasi-classical trajectory (QCT) and statistical methods reveals the important role played by the double well structure existing in the potential energy surface. The TDWP differential cross sections exhibit a forward-backward symmetry which could be interpreted as indicative of a complex-forming mechanism governing the dynamics of the process. The QM statistical method employed in this study, however, is not capable to reproduce the main features of the possible insertion nature in the reactive collision. The ability to stop individual trajectories selectively at specific locations inside the potential energy surface makes the QCT version of the statistical approach a better option to understand the overall dynamics of the process. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705426
Dynamics of the D + + H 2 and H + + D 2 reactions: a detailed comparison between theory and experiment An extensive set of experimental measurements on the dynamics of the H
ion-molecule reactions is compared with the results of quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical quasiclassical trajectory (SQCT) calculations. The dynamical observables considered include specific rate coefficients as a function of the translational energy, E T , thermal rate coefficients in the 100-500 K temperature range. In addition, kinetic energy spectra (KES) of the D + ions reactively scattered in H + + D 2 collisions are also presented for translational energies between 0.4 eV and 2.0 eV. For the two reactions, the best global agreement between experiment and theory over the whole energy range corresponds to the QCT calculations using a Gaussian binning (GB) procedure, which gives more weight to trajectories whose product vibrational action is closer to the actual integer QM values. The QM calculations also perform well, although somewhat worse over the more limited range of translational energies where they are available (E T o 0.6 eV and E T o 0.2 eV for the H + + D 2 and D + + H 2 reactions, respectively). The worst agreement is obtained with the SQCT method, which is only adequate for low translational energies. The comparison between theory and experiment also suggests that the most reliable rate coefficient measurements are those obtained with the merged beams technique. It is worth noting that none of the theoretical approaches can account satisfactorily for the experimental specific rate coefficients of H + + D 2 for E T r 0.2 eV although there is a considerable scatter in the existing measurements. On the whole, the best agreement with the experimental laboratory KES is obtained with the simulations carried out using the state resolved differential cross sections (DCSs) calculated with the QCT-GB method, which seems to account for most of the observed features. In contrast, the simulations with the SQCT data predict kinetic energy spectra (KES) considerably cooler than those experimentally determined
Agents adopting agriculture: Modeling the agricultural transition
The question "What drove foragers to farm?" has drawn answers from many different disciplines, often in the form of verbal models. Here, we take one such model, that of the ideal free distribution, and implement it as an agent-based computer simulation. Populations distribute themselves according to the marginal quality of different habitats, predicting settlement patterns and subsistence methods over both time and space. Our experiments and our analyses thereof show that central conclusions of the ideal free distribution model are reproduced by our agent-based simulation, while at the same time offering new insights into the theory's underlying assumptions. Generally, we demonstrate how agent-based models can make use of empirical data to reconstruct realistic environmental and cultural contexts, enabling concrete tests of the explanatory power of anthropological models put forward to explain historical developments, such as agricultural transitions, in specific times and places
- …