9 research outputs found

    Pediatric-onset Evans syndrome: Heterogeneous presentation and high frequency of monogenic disorders including LRBA and CTLA4 mutations

    Get PDF
    Evans syndrome (ES) is defined by the combination of autoimmune hemolytic anemia and immune thrombocytopenia. Clinical presentation includes manifestations of immune dysregulation, found in primary immune deficiencies, autoimmune lymphoproliferative syndrome with FAS (ALPS-FAS), Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) and Lipopolysaccharide-Responsive vesicle trafficking Beige-like and Anchor protein (LRBA) defects. We report the clinical history and genetic results of 18 children with ES after excluding ALPS-FAS. Thirteen had organomegaly, five lymphocytic infiltration of non-lymphoid organs, nine hypogammaglobulinemia and fifteen anomalies in lymphocyte phenotyping. Seven patients had genetic defects: three CTLA4 mutations (c.151C>T; c.109+1092_568-512del; c.110-2A>G) identified by Sanger sequencing and four revealed by Next Generation Sequencing: LRBA (c.2450+1C>T), STAT3 gain-of-function (c.2147C>T; c.2144C>T) and KRAS (c.37G>T). No feature emerged to distinguish patients with or without genetic diagnosis. Our data on pediatric-onset ES should prompt physicians to perform extensive screening for mutations in the growing pool of genes involved in primary immune deficiencies with autoimmunity

    CE-SSCP and CE-FLA, simple and high-throughput alternatives for fungal diversity studies

    No full text
    International audienceFungal communities are key components of soil, but the study of their ecological significance is limited by a lack of appropriated methods. For instance, the assessment of fungi occurrence and spatio-temporal variation in soil requires the analysis of a large number of samples. The molecular signature methods provide a useful tool to monitor these microbial communities and can be easily adapted to capillary electrophoresis (CE) allowing high-throughput studies. Here we assess the suitability of CE-FLA (Fragment Length Polymorphism, denaturing conditions) and CE-SSCP (Single-Stranded Conformation Polymorphism, native conditions) applied to environmental studies since they require a short molecular marker and no post-PCR treatments. We amplified the ITSI region from 22 fungal strains isolated from an alpine ecosystem and from total genomic DNA of alpine and infiltration basin soils. The CE-FLA and CE-SSCP separated 17 and 15 peaks respectively from a mixture of 19 strains. For the alpine soil-metagenomic DNA, the FLA displayed more peaks than the SSCP and the converse result was found for infiltration basin sediments. We concluded that CE-FLA and CE-SSCP of ITS I region provided complementary information. In order to improve CE-SSCP sensitivity. we tested its resolution according to migration temperature and found 32 degrees C to be optimal. Because of their simplicity, quickness and reproducibility. we found that these two methods were promising for high-throughput studies of soil fungal communities. (c) 2007 Elsevier B.V All rights reserved

    Phylogenetic analysis of the Aspergillus niger aggregate in relation to feruloyl esterase activity

    No full text
    International audienceSpecies of the Aspergillus niger aggregate are known to produce feruloyl esterases, enzymes involved in the degradation of cell wall polymers. However, species delineation is difficult in these fungi. We combined AFLP analysis with ITS rDNA and beta-tubulin sequencing to characterize the isolates of this aggregate in terms of feruloyl esterase production. A preliminary re-examination of isolates based on comparison of ITS rDNA and beta-tubulin sequences with those of typical taxa deposited in international collections led us to re-identify the isolates as members of the species A. niger, A. foetidus and A. tubingensis. Molecular clustering based on beta-tubulin data and AFLP analysis showed that the strains of A. niger formed a homogenous phylogenetic group distinguished by either zero or type A feruloyl esterase activity, while strains A. foetidus and A. tubingensis exhibited type B feruloyl esterase activity when grown on sugar beet pulp. (c) 2007 Elsevier Masson SAS. All rights reserved

    Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements

    No full text
    International audienceEditing the beta-globin locus in hematopoietic stem cells is an alternative therapeutic approach for gene therapy of beta-thalassemia and sickle cell disease. Using the CRISPR/Cas9 system, we genetically modified human hematopoietic stem and progenitor cells (HSPCs) to mimic the large rearrangements in the beta-globin locus associated with hereditary persistence of fetal hemoglobin (HPFH), a condition that mitigates the clinical phenotype of patients with beta-hemoglobinopathies. We optimized and compared the efficiency of plasmid-, lentiviral vector (LV)-, RNA-, and ribonucleoprotein complex (RNP)-based methods to deliver the CRISPR/Cas9 system into HSPCs. Plasmid delivery of Cas9 and gRNA pairs targeting two HPFH-like regions led to high frequency of genomic rearrangements and HbF reactivation in erythroblasts derived from sorted, Cas9(+) HSPCs but was associated with significant cell toxicity. RNA-mediated delivery of CRISPR/Cas9 was similarly toxic but much less efficient in editing the beta-globin locus. Transduction of HSPCs by LVs expressing Cas9 and gRNA pairs was robust and minimally toxic but resulted in poor genome-editing efficiency. Ribonucleoprotein (RNP)-based delivery of CRISPR/Cas9 exhibited a good balance between cytotoxicity and efficiency of genomic rearrangements as compared to the other delivery systems and resulted in HbF upregulation in erythroblasts derived from unselected edited HSPCs

    Diagnostic yield of next-generation sequencing in very early-onset inflammatory bowel diseases: A multicentre study

    No full text
    Background and Aims An expanding number of monogenic defects have been identified as causative of severe forms of very early-onset inflammatory bowel diseases [VEO-IBD]. The present study aimed at defining how next-generation sequencing [NGS] methods can be used to improve identification of known molecular diagnosis and to adapt treatment. Methods A total of 207 children were recruited in 45 paediatric centres through an international collaborative network [ESPGHAN GENIUS working group] with a clinical presentation of severe VEO-IBD [n = 185] or an anamnesis suggestive of a monogenic disorder [n = 22]. Patients were divided at inclusion into three phenotypic subsets: Predominantly small bowel inflammation, colitis with perianal lesions, and colitis only. Methods to obtain molecular diagnosis included functional tests followed by specific Sanger sequencing, custom-made targeted NGS, and in selected cases whole exome sequencing [WES] of parents-child trios. Genetic findings were validated clinically and/or functionally. Results Molecular diagnosis was achieved in 66/207 children [32%]: 61% with small bowel inflammation, 39% with colitis and perianal lesions, and 18% with colitis only. Targeted NGS pinpointed gene mutations causative of atypical presentations, and identified large exonic copy number variations previously missed by WES. Conclusions Our results lead us to propose an optimised diagnostic strategy to identify known monogenic causes of severe IBD
    corecore