13 research outputs found

    Perturbing gauge/gravity duals by a Romans mass

    Full text link
    We show how to produce algorithmically gravity solutions in massive IIA (as infinitesimal first order perturbations in the Romans mass parameter) dual to assigned conformal field theories. We illustrate the procedure on a family of Chern--Simons--matter conformal field theories that we recently obtained from the N=6 theory by waiving the condition that the levels sum up to zero.Comment: 30 page

    Gravity in the 3+1-Split Formalism II: Self-Duality and the Emergence of the Gravitational Chern-Simons in the Boundary

    Full text link
    We study self-duality in the context of the 3+1-split formalism of gravity with non-zero cosmological constant. Lorentzian self-dual configurations are conformally flat spacetimes and have boundary data determined by classical solutions of the three-dimensional gravitational Chern-Simons. For Euclidean self-dual configurations, the relationship between their boundary initial positions and initial velocity is also determined by the three-dimensional gravitational Chern-Simons. Our results imply that bulk self-dual configurations are holographically described by the gravitational Chern-Simons theory which can either viewed as a boundary generating functional or as a boundary effective action.Comment: 25 pages; v2: minor improvements, references adde

    Boosting Nearest-Neighbour to Long-Range Integrable Spin Chains

    Full text link
    We present an integrability-preserving recursion relation for the explicit construction of long-range spin chain Hamiltonians. These chains are generalizations of the Haldane-Shastry and Inozemtsev models and they play an important role in recent advances in string/gauge duality. The method is based on arbitrary nearest-neighbour integrable spin chains and it sheds light on the moduli space of deformation parameters. We also derive the closed chain asymptotic Bethe equations.Comment: 10 pages, v2: reference added, minor changes, v3: published version with added/updated reference

    Towards the F-Theorem: N=2 Field Theories on the Three-Sphere

    Full text link
    For 3-dimensional field theories with {\cal N}=2 supersymmetry the Euclidean path integrals on the three-sphere can be calculated using the method of localization; they reduce to certain matrix integrals that depend on the R-charges of the matter fields. We solve a number of such large N matrix models and calculate the free energy F as a function of the trial R-charges consistent with the marginality of the superpotential. In all our {\cal N}=2 superconformal examples, the local maximization of F yields answers that scale as N^{3/2} and agree with the dual M-theory backgrounds AdS_4 x Y, where Y are 7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local F-maximization is equivalent to the minimization of the volume of Y over the space of Sasakian metrics, a procedure also referred to as Z-minimization. Moreover, we find that the functions F and Z are related for any trial R-charges. In the models we study F is positive and decreases along RG flows. We therefore propose the "F-theorem" that we hope applies to all 3-d field theories: the finite part of the free energy on the three-sphere decreases along RG trajectories and is stationary at RG fixed points. We also show that in an infinite class of Chern-Simons-matter gauge theories where the Chern-Simons levels do not sum to zero, the free energy grows as N^{5/3} at large N. This non-trivial scaling matches that of the free energy of the gravity duals in type IIA string theory with Romans mass.Comment: 66 pages, 10 figures; v2: refs. added, minor improvement

    Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories

    Full text link
    In these lectures I give a pedagogical presentation of some of the recent progress in supersymmetric Chern-Simons-matter theories, coming from the use of localization and matrix model techniques. The goal is to provide a simple derivation of the exact interpolating function for the free energy of ABJM theory on the three-sphere, which implies in particular the N^{3/2} behavior at strong coupling. I explain in detail part of the background needed to understand this derivation, like holographic renormalization, localization of path integrals, and large N techniques in matrix modelsComment: 73 pages, 7 figures. v2: references and clarifications added, misprints corrected. v3: more references, clarifications, and corrections. v4: more corrections and clarifications, final version to appear in J. Phys.

    Gravity in the 3+1-Split Formalism I: Holography as an Initial Value Problem

    Full text link
    We present a detailed analysis of the 3+1-split formalism of gravity in the presence of a cosmological constant. The formalism helps revealing the intimate connection between holography and the initial value formulation of gravity. We show that the various methods of holographic subtraction of divergences correspond just to different transformations of the canonical variables, such that the initial value problem is properly set up at the boundary. The renormalized boundary energy momentum tensor is a component of the Weyl tensor.Comment: 28 pages; v2: minor improvements, references adde

    Superconformal M2-branes and generalized Jordan triple systems

    Full text link
    Three-dimensional conformal theories with six supersymmetries and SU(4) R-symmetry describing stacks of M2-branes are here proposed to be related to generalized Jordan triple systems. Writing the four-index structure constants in an appropriate form, the Chern-Simons part of the action immediately suggests a connection to such triple systems. In contrast to the previously considered three-algebras, the additional structure of a generalized Jordan triple system is associated to a graded Lie algebra, which corresponds to an extension of the gauge group. In this note we show that the whole theory with six manifest supersymmetries can be naturally expressed in terms of such a graded Lie algebra. Also the BLG theory with eight supersymmetries is included as a special case.Comment: 15 pages, v2 and v3: minor corrections and clarifications, references added, v2: section 4 extended, v3: published versio

    M2-Branes and Fano 3-folds

    Full text link
    A class of supersymmetric gauge theories arising from M2-branes probing Calabi-Yau 4-folds which are cones over smooth toric Fano 3-folds is investigated. For each model, the toric data of the mesonic moduli space is derived using the forward algorithm. The generators of the mesonic moduli space are determined using Hilbert series. The spectrum of scaling dimensions for chiral operators is computed.Comment: 128 pages, 39 figures, 42 table

    Calabi-Yau Volumes and Reflexive Polytopes

    Get PDF
    We study various geometrical quantities for Calabi–Yau varieties realized as cones over Gorenstein Fano varieties, obtained as toric varieties from reflexive polytopes in various dimensions. Focus is made on reflexive polytopes up to dimension 4 and the minimized volumes of the Sasaki–Einstein base of the corresponding Calabi–Yau cone are calculated. By doing so, we conjecture new bounds for the Sasaki–Einstein volume with respect to various topological quantities of the corresponding toric varieties. We give interpretations about these volume bounds in the context of associated field theories via the AdS/CFT correspondence
    corecore