228 research outputs found

    A Multi-wavelength MOCASSIN Model of the Magellanic-type Galaxy NGC 4449

    Full text link
    We use the photoionisation and dust radiative transfer code MOCASSIN to create a model of the dwarf irregular galaxy NGC 4449. The best-matching model reproduces the global optical emission line fluxes and the observed spectral energy distribution (SED) spanning wavelengths from the UV to sub-mm, and requires the bolometric luminosity of 6.25e9 Lsolar for the underlying stellar component, M_d/M_g of 1/680 and M_d of 2.2e6 Msolar.Comment: 4 pages, 4 figures, submitted to Proceedings of the IAU Symposium 284: The Spectral Energy Distribution of Galaxies (SED2011

    The bolometric and UV attenuation in normal spiral galaxies of the Herschel Reference Survey

    Get PDF
    The dust in nearby galaxies absorbs a fraction of the UV-optical-near-infrared radiation produced by stars. This energy is consequently re-emitted in the infrared. We investigate the portion of the stellar radiation absorbed by spiral galaxies from the HRS by modelling their UV-to-submillimetre spectral energy distributions. Our models provide an attenuated and intrinsic SED from which we find that on average 32 % of all starlight is absorbed by dust. We define the UV heating fraction as the percentage of dust luminosity that comes from absorbed UV photons and find that this is 56 %, on average. This percentage varies with morphological type, with later types having significantly higher UV heating fractions. We find a strong correlation between the UV heating fraction and specific star formation rate and provide a power-law fit. Our models allow us to revisit the IRX-AFUV relations, and derive these quantities directly within a self-consistent framework. We calibrate this relation for different bins of NUV-r colour and provide simple relations to relate these parameters. We investigated the robustness of our method and we conclude that the derived parameters are reliable within the uncertainties which are inherent to the adopted SED model. This calls for a deeper investigation on how well extinction and attenuation can be determined through panchromatic SED modelling.Comment: 14 pages, 7 figures. Accepted for publication in Astronomy & Astrophysic

    Spin polarized electric currents in semiconductor heterostructures induced by microwave radiation

    Full text link
    We report on microwave (mw) radiation induced electric currents in (Cd,Mn)Te/(Cd,Mg)Te and InAs/(In,Ga)As quantum wells subjected to an external in-plane magnetic field. The current generation is attributed to the spin-dependent energy relaxation of electrons heated by mw radiation. The relaxation produces equal and oppositely directed electron flows in the spin-up and spin-down subbands yielding a pure spin current. The Zeeman splitting of the subbands in the magnetic field leads to the conversion of the spin flow into a spin-polarized electric current.Comment: 3 pages, 4 figure

    The physical characteristics of the gas in the disk of Centaurus A using the Herschel Space Observatory

    Get PDF
    We search for variations in the disk of Centaurus A of the emission from atomic fine structure lines using Herschel PACS and SPIRE spectroscopy. In particular we observe the [C II](158 μ\mum), [N II](122 and 205 μ\mum), [O I](63 and 145 μ\mum) and [O III](88 μ\mum) lines, which all play an important role in cooling the gas in photo-ionized and photodissociation regions. We determine that the ([C II]+[O I]63_{63})/FTIRF_{TIR} line ratio, a proxy for the heating efficiency of the gas, shows no significant radial trend across the observed region, in contrast to observations of other nearby galaxies. We determine that 10 - 20% of the observed [C II] emission originates in ionized gas. Comparison between our observations and a PDR model shows that the strength of the far-ultraviolet radiation field, G0G_0, varies between 101.7510^{1.75} and 102.7510^{2.75} and the hydrogen nucleus density varies between 102.7510^{2.75} and 103.7510^{3.75} cm3^{-3}, with no significant radial trend in either property. In the context of the emission line properties of the grand-design spiral galaxy M51 and the elliptical galaxy NGC 4125, the gas in Cen A appears more characteristic of that in typical disk galaxies rather than elliptical galaxies.Comment: Accepted for publication in the Astrophysical Journal. 22 pages, 10 figures, 5 table

    Linking dust emission to fundamental properties in galaxies: The low-metallicity picture

    Get PDF
    In this work, we aim at providing a consistent analysis of the dust properties from metal-poor to metal-rich environments by linking them to fundamental galactic parameters. We consider two samples of galaxies: the Dwarf Galaxy Survey (DGS) and KINGFISH, totalling 109 galaxies, spanning almost 2 dex in metallicity. We collect infrared (IR) to submillimetre (submm) data for both samples and present the complete data set for the DGS sample. We model the observed spectral energy distributions (SED) with a physically-motivated dust model to access the dust properties. Using a different SED model (modified blackbody), dust composition (amorphous carbon), or wavelength coverage at submm wavelengths results in differences in the dust mass estimate of a factor two to three, showing that this parameter is subject to non-negligible systematic modelling uncertainties. For eight galaxies in our sample, we find a rather small excess at 500 microns (< 1.5 sigma). We find that the dust SED of low-metallicity galaxies is broader and peaks at shorter wavelengths compared to more metal-rich systems, a sign of a clumpier medium in dwarf galaxies. The PAH mass fraction and the dust temperature distribution are found to be driven mostly by the specific star-formation rate, SSFR, with secondary effects from metallicity. The correlations between metallicity and dust mass or total-IR luminosity are direct consequences of the stellar mass-metallicity relation. The dust-to-stellar mass ratios of metal-rich sources follow the well-studied trend of decreasing ratio for decreasing SSFR. The relation is more complex for highly star-forming low-metallicity galaxies and depends on the chemical evolutionary stage of the source (i.e., gas-to-dust mass ratio). Dust growth processes in the ISM play a key role in the dust mass build-up with respect to the stellar content at high SSFR and low metallicity. (abridged)Comment: 44 pages (20 pages main body plus 5 Appendices), 11 figures, 9 tables, accepted for publication in A&

    Insights into gas heating and cooling in the disc of NGC 891 from Herschel far-infrared spectroscopy

    Get PDF
    We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in the nearby edge-on spiral galaxy, NGC 891: [CII] 158 μ\mum, [NII] 122, 205 μ\mum, [OI] 63, 145 μ\mum, and [OIII] 88 μ\mum. We find that the photoelectric heating efficiency of the gas, traced via the ([CII]+[OII]63)/FTIRF_{\mathrm{TIR}} ratio, varies from a mean of 3.5×\times103^{-3} in the centre up to 8×\times103^{-3} at increasing radial and vertical distances in the disc. A decrease in ([CII]+[OII]63)/FTIRF_{\mathrm{TIR}} but constant ([CII]+[OI]63)/FPAHF_{\mathrm{PAH}} with increasing FIR colour suggests that polycyclic aromatic hydrocarbons (PAHs) may become important for gas heating in the central regions. We compare the observed flux of the FIR cooling lines and total IR emission with the predicted flux from a PDR model to determine the gas density, surface temperature and the strength of the incident far-ultraviolet (FUV) radiation field, G0G_{0}. Resolving details on physical scales of ~0.6 kpc, a pixel-by-pixel analysis reveals that the majority of the PDRs in NGC 891's disc have hydrogen densities of 1 < log (nn/cm3^{-3}) < 3.5 experiencing an incident FUV radiation field with strengths of 1.7 < log G0G_0 < 3. Although these values we derive for most of the disc are consistent with the gas properties found in PDRs in the spiral arms and inter-arm regions of M51, observed radial trends in nn and G0G_0 are shown to be sensitive to varying optical thickness in the lines, demonstrating the importance of accurately accounting for optical depth effects when interpreting observations of high inclination systems. With an empirical relationship between the MIPS 24 μ\mum and [NII] 205 μ\mum emission, we estimate an enhancement of the FUV radiation field strength in the far north-eastern side of the disc.Comment: Accepted for publication in A&A. 25 pages, including 17 figures and 3 tables, abstract abridged for arXi
    corecore