8,609 research outputs found

    Collider Interplay for Supersymmetry, Higgs and Dark Matter

    Get PDF
    We discuss the potential impacts on the CMSSM of future LHC runs and possible electron-positron and higher-energy proton-proton colliders, considering searches for supersymmetry via MET events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via MET searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2 variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m_0, m_{1/2} and A_0 of the CMSSM. Slepton measurements at CLIC would enable m_0 and m_{1/2} to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular electron-positron collider (FCC-ee, also known as TLEP) combined with LHC measurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, is likely to lie somewhere along a focus-point, stop coannihilation strip or direct-channel A/H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton-proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level.Comment: 47 pages, 26 figure

    Constitutively active acetylcholine-dependent potassium current increases atrial defibrillation threshold by favoring post-shock re-initiation

    Get PDF
    Electrical cardioversion (ECV), a mainstay in atrial fibrillation (AF) treatment, is unsuccessful in up to 10-20% of patients. An important aspect of the remodeling process caused by AF is the constitutive activition of the atrium-specific acetylcholine-dependent potassium current (I-K,I-ACh -> I-K,I-ACh-c), which is associated with ECV failure. This study investigated the role of I-K,I-ACh-c in ECV failure and setting the atrial defibrillation threshold (aDFT) in optically mapped neonatal rat cardiomyocyte monolayers. AF was induced by burst pacing followed by application of biphasic shocks of 25-100 V to determine aDFT. Blocking I-K,I-ACh-c by tertiapin significantly decreased DFT, which correlated with a significant increase in wavelength during reentry. Genetic knockdown experiments, using lentiviral vectors encoding a Kcnj5-specific shRNA to modulate I-K,I-ACh-c, yielded similar results. Mechanistically, failed ECV was attributed to incomplete phase singularity (PS) removal or reemergence of PSs (i.e. re-initiation) through unidirectional propagation of shock-induced action potentials. Re-initiation occurred at significantly higher voltages than incomplete PS-removal and was inhibited by I-K,I-ACh-c blockade. Whole-heart mapping confirmed our findings showing a 60% increase in ECV success rate after I-K,I-ACh-c blockade. This study provides new mechanistic insight into failing ECV of AF and identifies I-K,I-ACh-c as possible atrium-specific target to increase ECV effectiveness, while decreasing its harmfulness

    Compact, low power and low threshold electrically pumped micro disc lasers for 20Gb/s non return to zero all optical wavelength conversion

    Get PDF
    \u3cp\u3eUsing a 7.5μm wide InP Micro-Disc-Laser, with a very low ∼100μA threshold current, heterogeneously integrated on top of Silicon on Insulator substrate, all optical NRZ wavelength conversion at speeds up to 20Gb/s is demonstrated.\u3c/p\u3

    A new limit on the Ultra-High-Energy Cosmic-Ray flux with the Westerbork Synthesis Radio Telescope

    Get PDF
    A particle cascade (shower) in a dielectric, for example as initiated by an ultra-high energy cosmic ray, will have an excess of electrons which will emit coherent \v{C}erenkov radiation, known as the Askaryan effect. In this work we study the case in which such a particle shower occurs in a medium just below its surface. We show, for the first time, that the radiation transmitted through the surface is independent of the depth of the shower below the surface when observed from far away, apart from trivial absorption effects. As a direct application we use the recent results of the NuMoon project, where a limit on the neutrino flux for energies above 102210^{22}\,eV was set using the Westerbork Synthesis Radio Telescope by measuring pulsed radio emission from the Moon, to set a limit on the flux of ultra-high-energy cosmic rays.Comment: Accepted for publication in Phys. Rev.

    Implications of Improved Higgs Mass Calculations for Supersymmetric Models

    Get PDF
    We discuss the allowed parameter spaces of supersymmetric scenarios in light of improved Higgs mass predictions provided by FeynHiggs 2.10.0. The Higgs mass predictions combine Feynman-diagrammatic results with a resummation of leading and subleading logarithmic corrections from the stop/top sector, which yield a significant improvement in the region of large stop masses. Scans in the pMSSM parameter space show that, for given values of the soft supersymmetry-breaking parameters, the new logarithmic contributions beyond the two-loop order implemented in FeynHiggs tend to give larger values of the light CP-even Higgs mass, M_h, in the region of large stop masses than previous predictions that were based on a fixed-order Feynman-diagrammatic result, though the differences are generally consistent with the previous estimates of theoretical uncertainties. We re-analyze the parameter spaces of the CMSSM, NUHM1 and NUHM2, taking into account also the constraints from CMS and LHCb measurements of B_s to \mu+\mu- and ATLAS searches for MET events using 20/fb of LHC data at 8 TeV. Within the CMSSM, the Higgs mass constraint disfavours tan beta lesssim 10, though not in the NUHM1 or NUHM2.Comment: 22 pages, 17 figure

    Diagnostic assessment of service delivery health in South Africa : a systematic literature review

    Get PDF
    Access to cost-effective, high-quality and speedy public services is a legitimate requirement and expectation of all South Africans. However, despite massive increases in successive budgets and grants to the public sector, the economy continues to witness frequent unrest that is typically tagged as being about ‘service delivery’. To deal effectively with this conundrum, an evidence-driven, goal-oriented diagnosis of the health of service delivery in South Africa is required. This is even more important as service delivery deficits and backlogs have continued to grow and widen since democratisation. It is therefore pertinent that a diagnostic tool with a sound and rigid theoretical foundation, and rigorously evaluated against key performance metrics, be developed as part of efforts to close service delivery gaps. This paper explores the necessary criteria for a diagnostic tool to contribute effectively in closing service delivery gaps in South Africa.Toegang tot koste effektiewe, hoë gehalte en vinnige publieke dienste is ʼn geldige vereiste en ʼn verwagting van alle Suid-Afrikaners. Ten spyte van massiewe toenames in opeenvolgende begrotings en toelaes aan die publieke sektor, word die ekonomie steeds blootgestel aan gereëlde onrus wat tipies aan swak dienslewering toegeskryf word. Om effektief met hierdie strikvraag te werk te gaan is ʼn doelgerigte diagnose van die toestand van dienslewering in Suid-Afrika benodig. Dit is selfs belangriker soos dienslewering tekortkominge en agterstande toegeneem en versprei het sedert demokrasie in Suid-Afrika. Dit is daarom belangrik dat ʼn diagnostiese instrument met ʼn stewige teoretiese fondament ontwikkel en deeglik getoets word teen sleutel vertonings-maatstawwe in ʼn poging om dienslewering tekortkominge aan te spreek. Hierdie artikel ondersoek die nodige kriteria vir so ʼn diagnostiese instrument om sodoende noemenswaardig by te dra tot die verbetering van dienslewering in Suid-Afrika.http://sajie.journals.ac.zaam2019Industrial and Systems Engineerin

    Analytic calculation of radio emission from parametrized extensive air showers:A tool to extract shower parameters

    Get PDF
    The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purposewe have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations
    corecore