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Abstract

Purpose - It is the purpose of this article to improve existing methods for risk management, in
particular stress testing, for derivative portfolios. The method is explained and compared with other
methods, using hypothetical portfolios.

Design/methodology/appreach — Closed form option pricing formulas are used for valuation. To
assess the risk, future price movements are modeled by an empirical distribution in conjunction with a
semi-parametrically estimated tail. This approach captures the non-linearity of the portfolio risk and it
is possible to estimate the extreme risk adequately.

Findings ~ It is found that this method gives excellent results and that it clearly outperforms the
standard approach based on a quadratic approximation and the normal distribution. Especially for
very high confidence levels, the improvement is dramatic.

Practical implications — In applications of this type the present method is highly preferable to the
classical Delta-Gamma cum normal distribution approach.

Originality/value — This paper uses a “statistics of extremes” approach to stress testing. With this
approach it is possible to estimate the far tail of a derivative portfolio adequately.
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Introduction

Banks regularly estimate the downside risk on their trading portfolios for the purpose of
internal risk management and external supervision. The Delta-Gamma cum normal
distribution approach, as advocated by, for example, the RiskMetrics product, is the
industry standard for assessing the risks of a portfolio containing derivatives. This
Taylor expansion based method tries to capture the non-linear behavior of a portfolio
containing derivatives by a quadratic approximation. This approximation is accurate in
the vicinity of the current price of the underlying asset, which is the usual case in
value-at-risk exercises. The approximation, however, can be very inaccurate when the
price of the underlying asset drifts away from the current price. For value-at-risk exercises
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... VaR has been found of limited use in measuring firms’ exposures to extreme market VaR stress tests
events ....

There are two problems: one problem is that the probability by which extreme market
events do occur is not well captured by the normal distribution. The other problem is
the high curvature of a derivative portfolio with respect to the underlying in extreme
situations.

To overcome these problems, we present a method that uses closed form option 383
pricing formulas, such as the normal distribution based Black-Scholes formula, in order
to capture the high curvature at the edges, which may be completely missed if the
quadratic approximation is used. In order to estimate the probability that the derivative
portfolio will be in this area, we do not, however, use the assumption of normality.
Instead we rely on a fit of the tail of the distribution of the underlying that is
commensurate with the empirical distribution. Thus, while the pricing uses standard
normality based formulas, the transition probabilities for the underlying asset prices are
different. This hybrid procedure may seem to fly in the face of theoretical consistency.
But, other research has shown that the Black-Scholes pricing formula is usually within
the 95 percent confidence area, even if the underlying follows a non-normal stochastic
process (see, for example, Mahieu and Schotman, 1998). This may in part be due to the
usage of the Black-Scholes pricing formula as the basic input for giving actual price
quotes, modified in the tails to capture smiles and smirks. The transition probabilities of
the underlying asset features the heavy tails found in practice.

VaR of a portfolio of options on a single underlying asset

Representative of the standard way of obtaining VaR estimates is the RiskMetrics
Group (1996) methodology. It assumes that the log-returns of the underlying stock
are normally distributed with mean zero and a volatility that changes over time.
On the basis of this assumption and a quadratic approximation of the portfolio
returns as a function of the returns on the underlying asset, the first four moments
of the distribution of the portfolio returns can be estimated. Subsequently, a
Johnson distribution is fit to these moments. This distribution determines the VaR
estimate.

Two observations can be made regarding this fully parametric approach. First,
around the center there is little need to approximate the distribution of the returns by a
specific parametric model, since the empirical distribution contains sufficiently many
observations in this area. Second, in the tail area there is ample evidence that the
normal model is not appropriate (see, for example, Campbell ef al, 1997). Based on
these two observations we instead propose a semi-parametric approach, as in Caserta
et al. (1998), for example, whereby the tail part is modeled semi-parametrically and the
linearly interpolated empirical distribution function is used in the center. We assume,
in line with empirical evidence, that the distribution function of asset returns is heavy
tailed, ie. exhibits power decline. The class of distributions with this property,
formally the class of regularly varying distributions (see, for example, Danielsson et al,
2001), exhibits to first-order a Pareto-type tail[1]:

PriX = —x} =x"VL(x), y>0,

PriX = —x} =x" L), 5>0, &
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JRF for x > 0. The estimate of the distribution function of returns thus consists of a

6.5 trimmed empirical distribution to which we attach estimated heavy tails at both ends.

’ The tail parameters are estimated by means of Hill's method. The number of

observations used to estimate the tail parameters is determined by the bootstrap

method in Danielsson et al (2001). This also determines where the empirical

distribution function is trimmed, which ensures that our estimator of the distribution

384 function will be continuous and hence increasing. The portfolio value is determined via

the (normal based) pricing formula as a function of the value of the underlying asset.

We apply the Black-Scholes formula to each option in the portfolio and denote the

pricing function by V. If we want to estimate the VaR at level 1 — a, we need the value
of x for which Pr{V(S) < x} = a. This x can be estimated by solving the equation:

/0 Liv(s)<s dF(s) = a, 2

where F is the semi-parametric estimator of the distribution function of next period’s
asset price. The estimator F follows directly from the current asset price and the
estimator of the distribution function of the returns. The estimate of the VaR then
equals the current portfolio value minus x. The value of x can be found using a
bisection method, since Pr{V(S) < x} is increasing in x. To determine the above
expression for given x, we need to find the prices of the underlying asset for which the
portfolio has a value smaller than or equal to x. These prices can be found efficiently by
determining the local extrema of ¥(S). We note that between two local extrema, the
function is monotonic and thus V(S) — x can have only one root. The local extrema are
reached at those asset prices where the delta of the portfolio equals zero.

An example

We compare the alternative procedures for estimating the VaR for a given example
portfolio of derivatives. Consider the hypothetical portfolio where 15,000 plain vanilla
put options with strike price 107.50 are written (price per option: 0.090), 10,000 plain
vanilla call options with strike 100 (price per option: 12.628) and 40,000 with strike
112.50 are bought (price per option: 1.437) and 40,000 call options with strike 110 are
written (price per option: 3.061). The time to maturity is eight trading days for all
options.

The current asset price equals 112.50, and the volatility used to price the options is
taken to be 17 percent. The risk-free interest rate is assumed to be 4 percent. The
current value of the portfolio then equals 59,981. For estimation we use the returns of
the Amsterdam AEX Index from January 1983 until December 1994. The 1,491 data
from January 1995 until November 2000 are used for out-of-sample comparison.
Figure 1 shows the value of the portfolio as a function of the underlying stock and its
approximation by the RiskMetrics methodology. As can be seen directly from F igure 1,
the quadratic approximation performs badly in the (left) tail area and this has a
considerable influence on the VaR estimates.

The competing VaR estimates at various confidence levels are given in Table I. The
quadratic approximation (“Quadratic” in Table I) does not capture the behavior of the
portfolio for low values of the underlying stock price, and therefore these VaR
estimates are out of bounds. The estimates based on our non-linear Black-Scholes cum
heavy tail method (“Hybrid tail” in Table I) do have the right order of magnitude.
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95.0 703 559 702
99.0 3,070 564 5,830
99.5 12,041 564 15,737
9.7 33,676 564 23,202
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Figure 1.

Portfolio values as a
function of the underlying
asset price and RMG’s
approximation

Table 1.

VaR estimates and
out-of-sample results for
various confidence levels

In Table II we give the number of exceedances of the VaR values that we counted in the
out-of-sample dataset. For example, for the 95 percent confidence level we should see
approximately 0.05 X 1,491 = 75 exceedances. We also provide 95 percent confidence
bounds for the number of exceedances, based on the binomial distribution.

We see that the exceedances of our hybrid Black-Scholes cum heavy tail method
estimates are between the bounds for all the tabulated confidence levels. The quadratic
approximation cum normal transition probabilities method dramatically
underestimates the frequency of high losses, leading to a large number of VaR
exceedances in the out-of-sample exercise.

Portfolios on multiple underlying assets

In this section, we briefly present the case where we have a portfolio of derivatives on
several underlying assets. The quadratic approximation again gives rise to problems
at the edges. We consider a portfolio on two different underlying assets and we include

Confidence level Hybrid tail Quadratic Expected Lower bound Upper bound
95.0 67 540 74.55 59 91
99.0 21 534 1491 8 23
9.5 11 534 7.46 3 13
99.75 1 534 373 1 8

Table II.

Exceedances of the VaR
estimates with expected
values and confidence
bounds
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Figure 2.

Portfolio value as a
function of underlying
asset prices (left) and
RMG’s approximation
(right)

Table III.

VaR estimates at
different confidence
levels in the multivariate
example

for each asset the same options as in the univariate example. Both underlying assets
have the same spot price as in the univariate example (ie. 112.50), and the
corresponding options have the same strike prices as reported in the univariate
example. Moreover, the same volatility and risk-free interest rate as in the univariate
example are used to price the options. The value of the portfolio thus amounts to
259,981 = 119,962. In Figure 2 we see respectively the value of this portfolio as a
function of the underlying asset prices and its quadratic approximation. Clearly the
situation is similar to the univariate case.

We now sketch how one can implement a complete pricing formula for the case of
multiple underlying assets. Since the univariate method has no natural generalization,
we propose a simulation-based method. To this end we need an estimator of the
multivariate distribution function of the underlying asset returns. Since the estimator
of a univariate distribution function (see the second section) performs well, we use it to
estimate the univariate marginals of the multivariate distribution function. In order to
model the dependence between the returns (as is observed in financial data) we make
use of the multivariate normal copula (or dependence) function; see, for example, Joe
(1997) for a treatment of copulas and other dependence concepts. Since a copula
function has uniform-(0,1) marginals, in the bivariate case the normal copula contains
only the parameter p. The p has to be estimated from the data. We simulate returns for
the assets by generating multivariate normal copula random vectors and transform
these component-wise using the inverse of our univariate semi-parametric heavy tail
distribution function estimator. A similar approach is also used in Hull and White
(1998). With these simulated returns, we determine corresponding asset prices and the
portfolio value. By sorting all portfolio values attained in this way we can estimate the
VaR for the portfolio.

180,000 1
160,000
140,000
120,000
100,000
80,000
60,000
40,000
2,0000

Portfolio Value

Confidence level (percent) Hybrid tail Quadratic Historical simulation
95.0 5,572 1,050 4,748
99.0 63,591 1,179 67,971
99.5 127,096 1,197 111,550
99.75 193,509 1,207 156,959
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Table I1I gives our VaR estimates and RMG’s quadratic approximation VaR estimates
for various confidence levels for the bivariate portfolio. For estimation we used the
returns on the ING and Philips stock from March 1991 until September 1999. We notice
that the estimates based on historical simulation and the hybrid tail method are in the
same order of magnitude for all confidence levels, whereas the VaR estimates resulting
from RMG’s method are out of bounds for all confidence levels. This is due to the fact
that RMG’s quadratic approximation is unable to capture the behavior of the portfolio
at the edges.

Conclusions

In summary, a quadratic approximation in estimating the value-at-risk can be quite
misleading, if the current portfolio value is trapped in a local minimum. Moreover, the
normal-based transition probabilities underestimate the tail risk. Therefore it is better
to use a complete pricing method, with adjusted transition probabilities, to take
account of market incompleteness and observed pricing practices as well as the actual
risks in the underlying values.

Note

1. Here L (and I) represents a slowly varying function, ie. a function satisfying
M s [L(t0) /L(x)] = 1, ¢ > 0.
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