85 research outputs found

    Aerodynamic tests and analysis of a turbojet-boosted launch vehicle concept (spacejet) over a Mach number range of 1.50 to 2.86

    Get PDF
    Results from analytical and experimental studies of the aerodynamic characteristics of a turbojet-boosted launch vehicle concept through a Mach number range of 1.50 to 2.86 are presented. The vehicle consists of a winged orbiter utilizing an area-ruled axisymmetric body and two winged turbojet boosters mounted underneath the orbiter wing. Drag characteristics near zero lift were of prime interest. Force measurements and flow visualization techniques were employed. Estimates from wave drag theory, supersonic lifting surface theory, and impact theory are compared with data and indicate the ability of these theories to adequately predict the aerodynamic characteristics of the vehicle. Despite the existence of multiple wings and bodies in close proximity to each other, no large scale effects of boundary layer separation on drag or lift could be discerned. Total drag levels were, however, sensitive to booster locations

    Process tomography of ion trap quantum gates

    Get PDF
    A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this paper, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude--shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates

    The controlled teleportation of an arbitrary two-atom entangled state in driven cavity QED

    Full text link
    In this paper, we propose a scheme for the controlled teleportation of an arbitrary two-atom entangled state ϕ>12=agg>12+bge>12+ceg>12+dee>12|\phi>_{12}=a|gg>_{12}+b|ge>_{12}+c|eg>_{12}+d|ee>_{12} in driven cavity QED. An arbitrary two-atom entangled state can be teleported perfectly with the help of the cooperation of the third side by constructing a three-atom GHZ entangled state as the controlled channel. This scheme does not involve apparent (or direct) Bell-state measurement and is insensitive to the cavity decay and the thermal field. The probability of the success in our scheme is 1.0.Comment: 10 page

    Experimental delayed-choice entanglement swapping

    Full text link
    Motivated by the question, which kind of physical interactions and processes are needed for the production of quantum entanglement, Peres has put forward the radical idea of delayed-choice entanglement swapping. There, entanglement can be "produced a posteriori, after the entangled particles have been measured and may no longer exist". In this work we report the first realization of Peres' gedanken experiment. Using four photons, we can actively delay the choice of measurement-implemented via a high-speed tunable bipartite state analyzer and a quantum random number generator-on two of the photons into the time-like future of the registration of the other two photons. This effectively projects the two already registered photons onto one definite of two mutually exclusive quantum states in which either the photons are entangled (quantum correlations) or separable (classical correlations). This can also be viewed as "quantum steering into the past"

    An Open-System Quantum Simulator with Trapped Ions

    Full text link
    The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating the systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we report the first realization of a toolbox for simulating an open quantum system with up to five qubits. Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate this engineering by the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see publication. Manuscript + Supplementary Informatio

    Scalable multi-particle entanglement of trapped ions

    Full text link
    Among the various kinds of entangled states, the 'W state' plays an important role as its entanglement is maximally persistent and robust even under particle loss. Such states are central as a resource in quantum information processing and multiparty quantum communication. Here we report the scalable and deterministic generation of four-, five-, six-, seven- and eight-particle entangled states of the W type with trapped ions. We obtain the maximum possible information on these states by performing full characterization via state tomography, using individual control and detection of the ions. A detailed analysis proves that the entanglement is genuine. The availability of such multiparticle entangled states, together with full information in the form of their density matrices, creates a test-bed for theoretical studies of multiparticle entanglement. Independently, -Greenberger-Horne-Zeilinger- entangled states with up to six ions have been created and analysed in Boulder

    Weight-loss and exercise for communities with arthritis in North Carolina (we-can): design and rationale of a pragmatic, assessor-blinded, randomized controlled trial

    Get PDF
    Background: Recently, we determined that in a rigorously monitored environment an intensive diet-induced weight loss of 10% combined with exercise was significantly more effective at reducing pain in men and women with symptomatic knee osteoarthritis (OA) than either intervention alone. Compared to previous long-term weight loss and exercise trials of knee OA, our intensive diet-induced weight loss and exercise intervention was twice as effective at reducing pain intensity. Whether these results can be generalized to less intensively monitored cohorts is unknown. Thus, the policy relevant and clinically important question is: Can we adapt this successful solution to a pervasive public health problem in real-world clinical and community settings? This study aims to develop a systematic, practical, cost-effective diet-induced weight loss and exercise intervention implemented in community settings and to determine its effectiveness in reducing pain and improving other clinical outcomes in persons with knee OA. Methods/Design: This is a Phase III, pragmatic, assessor-blinded, randomized controlled trial. Participants will include 820 ambulatory, community-dwelling, overweight and obese (BMI ≥ 27 kg/m2) men and women aged ≥ 50 years who meet the American College of Rheumatology clinical criteria for knee OA. The primary aim is to determine whether a community-based 18-month diet-induced weight loss and exercise intervention based on social cognitive theory and implemented in three North Carolina counties with diverse residential (from urban to rural) and socioeconomic composition significantly decreases knee pain in overweight and obese adults with knee OA relative to a nutrition and health attention control group. Secondary aims will determine whether this intervention improves self-reported function, health-related quality of life, mobility, and is cost-effective. Discussion: Many physicians who treat people with knee OA have no practical means to implement weight loss and exercise treatments as recommended by numerous OA treatment guidelines. This study will establish the effectiveness of a community program that will serve as a blueprint and exemplar for clinicians and public health officials in urban and rural communities to implement a diet-induced weight loss and exercise program designed to reduce knee pain and improve other clinical outcomes in overweight and obese adults with knee OA

    Measuring resting cerebral haemodynamics using MRI arterial spin labelling and transcranial Doppler ultrasound: comparison in younger and older adults

    Get PDF
    Introduction: Resting cerebral blood flow (CBF) and perfusion measures have been used to determine brain health. Studies showing variation in resting CBF with age and fitness level using different imaging approaches have produced mixed findings. We assess the degree to which resting CBF measures through transcranial Doppler (TCD) and arterial spin labelling (ASL) MRI provide complementary information in older and younger, fit and unfit cohorts. Methods: Thirty-five healthy volunteers (20 younger: 24±7y; 15 older: 66±7y) completed two experimental sessions (TCD/MRI). Aging and fitness effects within and between imaging modalities were assessed. Results: Middle cerebral artery blood velocity (MCAv, TCD) was lower and transit time (MRI) slower in older compared with younger participants (p < 0.05). The younger group had higher grey matter cerebral perfusion (MRI) than the older group, albeit not significantly (p=0.13). Surprisingly, fitness effects in the younger group (decrease/increase in MCAv/transit time with fitness, respectively) opposed the older group (increase/decrease in MCAv/transit time). Whole cohort transit times correlated with MCAv (r=-0.63; p < 0.05), whereas tissue perfusion did not correlate with TCD measures. Conclusion: TCD and MRI modalities provide complementary resting CBF measures, with similar effects across the whole cohort and between subgroups (age/fitness) if metrics are comparable (e.g., velocity [TCD] vs transit time [MRI])

    Prescribing Exercise with Ease: For You and Your Patient

    No full text
    corecore