13,018 research outputs found

    The stellar mass-halo mass relation of isolated field dwarfs: a critical test of Λ\LambdaCDM at the edge of galaxy formation

    Get PDF
    We fit the rotation curves of isolated dwarf galaxies to directly measure the stellar mass-halo mass relation (MM200M_*-M_{200}) over the mass range 5×105<M/M<1085 \times 10^5 < M_{*}/{\rm M}_\odot < 10^{8}. By accounting for cusp-core transformations due to stellar feedback, we find a monotonic relation with little scatter. Such monotonicity implies that abundance matching should yield a similar MM200M_*-M_{200} if the cosmological model is correct. Using the 'field galaxy' stellar mass function from the Sloan Digital Sky Survey (SDSS) and the halo mass function from the Λ\Lambda Cold Dark Matter Bolshoi simulation, we find remarkable agreement between the two. This holds down to M2005×109M_{200} \sim 5 \times 10^9M_\odot, and to M2005×108M_{200} \sim 5 \times 10^8M_\odot if we assume a power law extrapolation of the SDSS stellar mass function below M107M_* \sim 10^7M_\odot. However, if instead of SDSS we use the stellar mass function of nearby galaxy groups, then the agreement is poor. This occurs because the group stellar mass function is shallower than that of the field below M109M_* \sim 10^9M_\odot, recovering the familiar 'missing satellites' and 'too big to fail' problems. Our result demonstrates that both problems are confined to group environments and must, therefore, owe to 'galaxy formation physics' rather than exotic cosmology. Finally, we repeat our analysis for a Λ\Lambda Warm Dark Matter cosmology, finding that it fails at 68% confidence for a thermal relic mass of mWDM<1.25m_{\rm WDM} < 1.25keV, and mWDM<2m_{\rm WDM} < 2keV if we use the power law extrapolation of SDSS. We conclude by making a number of predictions for future surveys based on these results.Comment: 22 pages; 2 Tables; 10 Figures. This is the version accepted for publication in MNRAS. Key changes: (i) added substantially more information on the surveys used to measure the stellar mass functions; (ii) added tests of the robustness of our results. Results and conclusions unchanged from previously. Minor typos corrected from previous versio

    Dark matter cores all the way down

    Get PDF
    We use high resolution simulations of isolated dwarf galaxies to study the physics of dark matter cusp-core transformations at the edge of galaxy formation: M200 = 10^7 - 10^9 Msun. We work at a resolution (~4 pc minimum cell size; ~250 Msun per particle) at which the impact from individual supernovae explosions can be resolved, becoming insensitive to even large changes in our numerical 'sub-grid' parameters. We find that our dwarf galaxies give a remarkable match to the stellar light profile; star formation history; metallicity distribution function; and star/gas kinematics of isolated dwarf irregular galaxies. Our key result is that dark matter cores of size comparable to the stellar half mass radius (r_1/2) always form if star formation proceeds for long enough. Cores fully form in less than 4 Gyrs for the M200 = 10^8 Msun and 14 Gyrs for the 10^9 Msun dwarf. We provide a convenient two parameter 'coreNFW' fitting function that captures this dark matter core growth as a function of star formation time and the projected stellar half mass radius. Our results have several implications: (i) we make a strong prediction that if LCDM is correct, then 'pristine' dark matter cusps will be found either in systems that have truncated star formation and/or at radii r > r_1/2; (ii) complete core formation lowers the projected velocity dispersion at r_1/2 by a factor ~2, which is sufficient to fully explain the 'too big to fail problem'; and (iii) cored dwarfs will be much more susceptible to tides, leading to a dramatic scouring of the subhalo mass function inside galaxies and groups.Comment: 20 pages; 9 figures; final version to appear in MNRAS including typos corrected in proo

    Reduced-order models of the Martian atmospheric dynamics

    Get PDF
    In this paper we explore the possibility of deriving low-dimensional models of the dynamics of the Martian atmosphere. The analysis consists of a Proper Orthogonal Decomposition (POD) of the atmospheric streamfunction after first decomposing the vertical structure with a set of eigenmodes. The vertical modes were obtained from the quasi-geostrophic vertical structure equation. The empirical orthogonal functions (EOFs) were optimized to represent the atmospheric total energy. The total energy was used as the criterion to retain those modes with large energy content and discard the rest. The principal components (PCs) were analysed by means of Fourier analysis, so that the dominant frequencies could be identified. It was possible to observe the strong influence of the diurnal cycle and to identify the motion and vacillation of baroclinic waves

    Wick's Theorem and a New Perturbation Theory Around the Atomic Limit of Strongly Correlated Electron Systems

    Full text link
    A new type of perturbation expansion in the mixing VV of localized orbitals with a conduction-electron band in the UU\to\infty Anderson model is presented. It is built on Feynman diagrams obeying standard rules. The local correlations of the unperturbed system (the atomic limit) are included exactly, no auxiliary particles are introduced. As a test, an infinite-order ladder-type resummation is analytically treated in the Kondo regime, recovering the correct energy scale. An extension to the Anderson-lattice model is obtained via an effective-site approximation through a cumulant expansion in VV on the lattice. Relation to treatments in infinite spatial dimensions are indicated.Comment: selfextracting postscript file containing entire paper (10 pages) including 3 figures, in case of trouble contact author for LaTeX-source or hard copies (prep0994

    Localization in disordered superconducting wires with broken spin-rotation symmetry

    Full text link
    Localization and delocalization of non-interacting quasiparticle states in a superconducting wire are reconsidered, for the cases in which spin-rotation symmetry is absent, and time-reversal symmetry is either broken or unbroken; these are referred to as symmetry classes BD and DIII, respectively. We show that, if a continuum limit is taken to obtain a Fokker-Planck (FP) equation for the transfer matrix, as in some previous work, then when there are more than two scattering channels, all terms that break a certain symmetry are lost. It was already known that the resulting FP equation exhibits critical behavior. The additional symmetry is not required by the definition of the symmetry classes; terms that break it arise from non-Gaussian probability distributions, and may be kept in a generalized FP equation. We show that they lead to localization in a long wire. When the wire has more than two scattering channels, these terms are irrelevant at the short distance (diffusive or ballistic) fixed point, but as they are relevant at the long-distance critical fixed point, they are termed dangerously irrelevant. We confirm the results in a supersymmetry approach for class BD, where the additional terms correspond to jumps between the two components of the sigma model target space. We consider the effect of random π\pi fluxes, which prevent the system localizing. We show that in one dimension the transitions in these two symmetry classes, and also those in the three chiral symmetry classes, all lie in the same universality class

    Active-distributed temperature sensing to continuously quantify vertical flow in boreholes

    Get PDF
    We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s−1 elicited a 2.5°C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics
    corecore