124 research outputs found
Surprising variations in the rotation of the chemically peculiar stars CU Virginis and V901 Orionis
CU Vir and V901 Ori belong among these few magnetic chemically peculiar stars
whose rotation periods vary on timescales of decades. We aim to study the
stability of the periods in CU Vir and V901 Ori using all accessible
observational data containing phase information. We collected all available
relevant archived observations supplemented with our new measurements of these
stars and analysed the period variations of the stars using a novel method that
allows for the combination of data of diverse sorts. We found that the shapes
of their phase curves were constant, while the periods were changing. Both
stars exhibit alternating intervals of rotational braking and acceleration. The
rotation period of CU Vir was gradually shortening until the year 1968, when it
reached its local minimum of 0.52067198 d. The period then started increasing,
reaching its local maximum of 0.5207163 d in the year 2005. Since that time the
rotation has begun to accelerate again. We also found much smaller period
changes in CU Vir on a timescale of several years. The rotation period of V901
Ori was increasing for the past quarter-century, reaching a maximum of 1.538771
d in the year 2003, when the rotation period began to decrease. A theoretically
unexpected alternating variability of rotation periods in these stars would
remove the spin-down time paradox and brings a new insight into structure and
evolution of magnetic upper-main-sequence stars.Comment: 5 pages, 3 figure
The radio lighthouse CU Virginis: the spindown of a single main sequence star
The fast rotating star CU Virginis is a magnetic chemically peculiar star
with an oblique dipolar magnetic field. The continuum radio emission has been
interpreted as gyrosyncrotron emission arising from a thin magnetospheric
layer. Previous radio observations at 1.4 GHz showed that a 100% circular
polarized and highly directive emission component overlaps to the continuum
emission two times per rotation, when the magnetic axis lies in the plane of
the sky. This sort of radio lighthouse has been proposed to be due to cyclotron
maser emission generated above the magnetic pole and propagating
perpendicularly to the magnetic axis. Observations carried out with the
Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this
discovery show that this radio emission is still present, meaning that the
phenomenon responsible for this process is steady on a timescale of years. The
emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On
the light of recent results on the physics of the magnetosphere of this star,
the possibility of plasma radiation is ruled out. The characteristics of this
radio lighthouse provides us a good marker of the rotation period, since the
peaks are visible at particular rotational phases. After one year, they show a
delay of about 15 minutes. This is interpreted as a new abrupt spinning down of
the star. Among several possibilities, a quick emptying of the equatorial
magnetic belt after reaching the maximum density can account for the magnitude
of the breaking. The study of the coherent emission in stars like CU Vir, as
well as in pre main sequence stars, can give important insight into the angular
momentum evolution in young stars. This is a promising field of investigation
that high sensitivity radio interferometers such as SKA can exploit.Comment: Accepted to MNRAS, 8 pages, 7 figures, updated versio
Magnetic Doppler imaging of alpha^2 Canum Venaticorum in all four Stokes parameters. Unveiling the hidden complexity of stellar magnetic fields
Strong organized magnetic fields have been studied in the upper main sequence
chemically peculiar stars for more than half a century. However, only recently
have observational methods and numerical techniques become sufficiently mature
to allow us to record and interpret high-resolution four Stokes parameter
spectra, leading to the first assumption-free magnetic field models of these
stars. Here we present a detailed magnetic Doppler imaging analysis of the
spectropolarimetric observations of the prototypical magnetic Ap star alpha^2
CVn. The surface abundance distributions of Fe and Cr and a full vector map of
the stellar magnetic field are reconstructed in a self-consistent inversion
using our state-of-the-art magnetic Doppler imaging code Invers10. We succeeded
in reproducing most of the details of the available spectropolarimetric
observations of alpha^2 CVn with a magnetic map which combines a global
dipolar-like field topology with localized spots of higher field intensity. We
demonstrate that these small-scale magnetic structures are inevitably required
to fit the linear polarization spectra; however, their presence cannot be
inferred from the Stokes I and V observations alone. Our magnetic Doppler
imaging analysis of alpha^2 CVn and previous results for 53 Cam support the
view that the upper main sequence stars can harbour fairly complex surface
magnetic fields which resemble oblique dipoles only at the largest spatial
scales. Spectra in all four Stokes parameters are absolutely essential to
unveil and meaningfully characterize this field complexity in Ap stars. We
therefore suggest that understanding magnetism of stars in other parts of the
H-R diagram is similarly incomplete without investigation of their linear
polarization spectra.Comment: 16 pages, 12 figures; Accepted for publication by Astronomy &
Astrophysic
Correlation effects in MgO and CaO: Cohesive energies and lattice constants
A recently proposed computational scheme based on local increments has been
applied to the calculation of correlation contributions to the cohesive energy
of the CaO crystal. Using ab-initio quantum chemical methods for evaluating
individual increments, we obtain 80% of the difference between the experimental
and Hartree-Fock cohesive energies. Lattice constants corrected for correlation
effects deviate by less than 1% from experimental values, in the case of MgO
and CaO.Comment: LaTeX, 4 figure
Revisiting the Rigidly Rotating Magnetosphere model for sigma Ori E. I. Observations and Data Analysis
We have obtained 18 new high-resolution spectropolarimetric observations of
the B2Vp star sigma Ori E with both the Narval and ESPaDOnS
spectropolarimeters. The aim of these observations is to test, with modern
data, the assumptions of the Rigidly Rotating Magnetosphere (RRM) model of
Townsend & Owocki (2005), applied to the specific case of sigma Ori E by
Townsend et al. (2005). This model includes a substantially offset dipole
magnetic field configuration, and approximately reproduces previous
observational variations in longitudinal field strength, photometric
brightness, and Halpha emission. We analyze new spectroscopy, including H I, He
I, C II, Si III and Fe III lines, confirming the diversity of variability in
photospheric lines, as well as the double S-wave variation of circumstellar
hydrogen. Using the multiline analysis method of Least-Squares Deconvolution
(LSD), new, more precise longitudinal magnetic field measurements reveal a
substantial variance between the shapes of the observed and RRM model
time-varying field. The phase resolved Stokes V profiles of He I 5876 A and
6678 A lines are fit poorly by synthetic profiles computed from the magnetic
topology assumed by Townsend et al. (2005). These results challenge the offset
dipole field configuration assumed in the application of the RRM model to sigma
Ori E, and indicate that future models of its magnetic field should also
include complex, higher-order components.Comment: 13 pages, 8 figures. Accepted for publication in MNRA
Modelling the light variability of the Ap star epsilon Ursae Majoris
We simulate the light variability of the Ap star epsUMa using the observed
surface distributions of Fe, Cr, Ca, Mn, Mg, Sr and Ti obtained with the help
of Doppler Imaging technique. Using all photometric data available we specified
light variations of epsUMa modulated by its rotation from far UV to IR. We
employed the LLmodels stellar model atmosphere code to predict the light
variability in different photometric systems. The rotational period of epsUMa
is refined to 5d088631(18). It is shown that the observed light variability can
be explained as a result of the redistribution of radiative flux from the UV
spectral region to the visual caused by the inhomogeneous surface distribution
of chemical elements. Among seven mapped elements, only Fe and Cr significantly
contribute to the amplitude of the observed light variability. In general, we
find a very good agreement between theory and observations. We confirm the
important role of Fe and Cr to the magnitude of the well-known depression
around 5200 \AA\ through the analysis of the peculiar -parameter. Finally,
we show that the abundance spots of considered elements cannot explain the
observed variability in near UV and index which are likely due to some
other causes. The inhomogeneous surface distribution of chemical elements can
explain most of the observed light variability of the A-type CP star epsUMa.Comment: Accepted in A&A, 10 pages, 9 figures, 3 table
Cohesive properties of alkali halides
We calculate cohesive properties of LiF, NaF, KF, LiCl, NaCl, and KCl with
ab-initio quantum chemical methods. The coupled-cluster approach is used to
correct the Hartree-Fock crystal results for correlations and to systematically
improve cohesive energies, lattice constants and bulk moduli. After inclusion
of correlations, we recover 95-98 % of the total cohesive energies. The lattice
constants deviate from experiment by at most 1.1 %, bulk moduli by at most 8 %.
We also find good agreement for spectroscopic properties of the corresponding
diatomic molecules.Comment: LaTeX, 10 pages, 1 figure, accepted by Phys. Rev.
Protein and folic acid content in the maternal diet determine lipid metabolism and response to high-fat feeding in rat progeny in an age-dependent manner
Maternal diet during gestation can exert a long-term effect on the progeny’s health by programming their developmental scheme and metabolism. The aim of this study is to analyze the influence of maternal diet on lipid metabolism in 10- and 16-week-old rats. Pregnant dams were fed one of four diets: a normal protein and normal folic acid diet (NP-NF), a protein-restricted and normal folic acid diet (PR-NF), a protein-restricted and folic-acid-supplemented diet (PR-FS), or a normal protein and folic-acid-supplemented diet (NP-FS). We also tested whether prenatal nutrition determines the reaction of an organism to a postweaning high-fat diet. Blood biochemistry and biometrical parameters were evaluated. The expression patterns of PPARα, PPARγ, and LXRα in the liver and adipose tissue were examined by real-time PCR. In the 10-week-old, rats folic acid supplementation of the maternal diet was associated with reduced circulating glucose and total cholesterol concentrations (P < 0.01 and P < 0.001, respectively). Neither prenatal diets nor postnatal feeding affected blood insulin concentrations. In the 16-week-old rats, body weight, abdominal fat mass and central adiposity were reduced in the progeny of the folic acid–supplemented dams (P < 0.01, P < 0.001 and P < 0.01, respectively). Maternal protein restriction had no effect on biometry or blood biochemical parameters. Folic acid supplementation of the maternal diet was associated with reduced expression of PPARα, PPARγ, and LXRα in the liver (P < 0.001). Reduced protein content in the maternal diet was associated with increased PPARα mRNA level in the liver (P < 0.001) and reduced LXRα in adipose tissue (P < 0.01). PPARα and PPARγ transcription in the liver, as well as LXRα transcription in adipose tissue, was also dependent on interaction effects between prenatal and postnatal diet compositions. PPARγ transcription in the liver was correlated with the abdominal fat mass, body weight, and calorie intake, while PPARγ transcription in adipose tissue was correlated with reduced body weight and calorie intake. Total serum cholesterol concentration was correlated with LXRα transcription in the liver. Folic acid supplementation of the maternal diet may have favorable effects for lipid metabolism in the progeny, but these effects are modified by the postnatal diet and age. Furthermore, the expression of LXRα, PPARα, and PPARγ in the liver and adipose tissue largely depends on the protein and folic acid content in the maternal diet during gestation. However, the altered transcription profile of these key regulators of lipid metabolism does not straightforwardly explain the observed phenotype
Mass spectrometric separation and quantitation of overlapping isotopologues. H2O/HOD/D2O and H2Se/HDSe/D2Se mixtures
- …
