1,399 research outputs found

    Noise and Inertia-Induced Inhomogeneity in the Distribution of Small Particles in Fluid Flows

    Get PDF
    The dynamics of small spherical neutrally buoyant particulate impurities immersed in a two-dimensional fluid flow are known to lead to particle accumulation in the regions of the flow in which rotation dominates over shear, provided that the Stokes number of the particles is sufficiently small. If the flow is viewed as a Hamiltonian dynamical system, it can be seen that the accumulations occur in the nonchaotic parts of the phase space: the Kolmogorov--Arnold--Moser tori. This has suggested a generalization of these dynamics to Hamiltonian maps, dubbed a bailout embedding. In this paper we use a bailout embedding of the standard map to mimic the dynamics of impurities subject not only to drag but also to fluctuating forces modelled as white noise. We find that the generation of inhomogeneities associated with the separation of particle from fluid trajectories is enhanced by the presence of noise, so that they appear in much broader ranges of the Stokes number than those allowing spontaneous separation

    Universal properties of highly frustrated quantum magnets in strong magnetic fields

    Get PDF
    The purpose of the present paper is two-fold. On the one hand, we review some recent studies on the low-temperature strong-field thermodynamic properties of frustrated quantum spin antiferromagnets which admit the so-called localized-magnon eigenstates. One the other hand, we provide some complementary new results. We focus on the linear independence of the localized-magnon states, the estimation of their degeneracy with the help of auxiliary classical lattice-gas models and the analysis of the contribution of these states to thermodynamics.Comment: Paper based on the invited talk given by J. Richter at the International Conference "Statistical Physics 2006. Condensed Matter: Theory and Applications" dedicated to the 90th anniversary of Ilya Lifshitz (Kharkiv, 11-15 September, 2006

    Turbulence-induced melting of a nonequilibrium vortex crystal in a forced thin fluid film

    Get PDF
    To develop an understanding of recent experiments on the turbulence-induced melting of a periodic array of vortices in a thin fluid film, we perform a direct numerical simulation of the two-dimensional Navier-Stokes equations forced such that, at low Reynolds numbers, the steady state of the film is a square lattice of vortices. We find that, as we increase the Reynolds number, this lattice undergoes a series of nonequilibrium phase transitions, first to a crystal with a different reciprocal lattice and then to a sequence of crystals that oscillate in time. Initially the temporal oscillations are periodic; this periodic behaviour becomes more and more complicated, with increasing Reynolds number, until the film enters a spatially disordered nonequilibrium statistical steady that is turbulent. We study this sequence of transitions by using fluid-dynamics measures, such as the Okubo-Weiss parameter that distinguishes between vortical and extensional regions in the flow, ideas from nonlinear dynamics, e.g., \Poincare maps, and theoretical methods that have been developed to study the melting of an equilibrium crystal or the freezing of a liquid and which lead to a natural set of order parameters for the crystalline phases and spatial autocorrelation functions that characterise short- and long-range order in the turbulent and crystalline phases, respectively.Comment: 31 pages, 56 figures, movie files not include

    High-Field ESR Measurements of S=1/2 Kagome Lattice Antiferromagnet BaCu3_3V2_2O8_8(OH)2_2

    Full text link
    High-field electron spin resonance (ESR) measurements have been performed on vesignieite BaCu3_3V2_2O8_8(OH)2_2, which is considered as a nearly ideal model substance of SS=1/2 kagome antiferromagnet, in the temperature region from 1.9 to 265 K. The frequency region is from 60 to 360 GHz and the applied pulsed magnetic field is up to 16 T. Observed g-value and linewidth show the increase below 20 K, which suggest the development of the short range order. Moreover, a gapless spin liquid ground state is suggested from the frequency-field relation at 1.9 K.Comment: 5 pages, 6 figures, jpsj2 class file, to be published in J. Phys. Soc. Jp

    Quaternion-Octonion SU(3) Flavor Symmetry

    Full text link
    Starting with the quaternionic formulation of isospin SU(2) group, we have derived the relations for different components of isospin with quark states. Extending this formalism to the case of SU(3) group we have considered the theory of octonion variables. Accordingly, the octonion splitting of SU(3) group have been reconsidered and various commutation relations for SU(3) group and its shift operators are also derived and verified for different iso-spin multiplets i.e. I, U and V- spins. Keywords: SU(3), Quaternions, Octonions and Gell Mann matrices PACS NO: 11.30.Hv: Flavor symmetries; 12.10-Dm: Unified field theories and models of strong and electroweak interaction

    Novel spin-liquid states in the frustrated Heisenberg antiferromagnet on the honeycomb lattice

    Full text link
    Recent experiment on a honeycomb-lattice Heisenberg antiferromagnet (AF) Bi3_3Mn4_4O12_{12}(NO3_3) revealed a novel spin-liquid-like behavior down to low temperature, which was ascribed to the frustration effect due to the competition between the AF nearest- and next-nearest-neighbor interactions J1J_1 and J2J_2. Motivated by the experiment, we study the ordering of the J1J_1 -J2J_2 frustrated classical Heisenberg AF on a honeycomb lattice both by a low-temperature expansion and a Monte Carlo simulation. The model has been known to possess a massive degeneracy of the ground state, which, however, might be lifted due to thermal fluctuations leading to a unique ordered state, the effect known as 'order-by-disorder'. We find that the model exhibits an intriguing ordering behavior, particularly near the AF phase boundary. The energy scale of the order-by-disorder is suppressed there down to extremely low temperatures, giving rise to exotic spin-liquid states like a "ring-liquid" or a "pancake-liquid" state accompanied by the characteristic spin structure factor and the field-induced antiferromagnetism. We argue that the recent experimental data are explicable if the system is in such exotic spin-liquid states

    Buckling Instabilities of a Confined Colloid Crystal Layer

    Full text link
    A model predicting the structure of repulsive, spherically symmetric, monodisperse particles confined between two walls is presented. We study the buckling transition of a single flat layer as the double layer state develops. Experimental realizations of this model are suspensions of stabilized colloidal particles squeezed between glass plates. By expanding the thermodynamic potential about a flat state of N N confined colloidal particles, we derive a free energy as a functional of in-plane and out-of-plane displacements. The wavevectors of these first buckling instabilities correspond to three different ordered structures. Landau theory predicts that the symmetry of these phases allows for second order phase transitions. This possibility exists even in the presence of gravity or plate asymmetry. These transitions lead to critical behavior and phases with the symmetry of the three-state and four-state Potts models, the X-Y model with 6-fold anisotropy, and the Heisenberg model with cubic interactions. Experimental detection of these structures is discussed.Comment: 24 pages, 8 figures on request. EF508

    Couplings of self-dual tensor multiplet in six dimensions

    Get PDF
    The (1,0) supersymmetry in six dimensions admits a tensor multiplet which contains a second-rank antisymmetric tensor field with a self-dual field strength and a dilaton. We describe the fully supersymmetric coupling of this multiplet to Yang-Mills multiplet, in the absence of supergravity. The self-duality equation for the tensor field involves a Chern-Simons modified field strength, the gauge fermions, and an arbitrary dimensionful parameter.Comment: 17 pages, latex, no figure

    Towards an Ashtekar formalism in eight dimensions

    Full text link
    We investigate the possibility of extending the Ashtekar theory to eight dimensions. Our approach relies on two notions: the octonionic structure and the MacDowell-Mansouri formalism generalized to a spacetime of signature 1+7. The key mathematical tool for our construction is the self-dual (antiself-dual) four-rank fully antisymmetric octonionic tensor. Our results may be of particular interest in connection with a possible formulation of M-theory via matroid theory.Comment: 15 pages, Latex, minor changes, to appear in Class. Quantum Gra
    corecore