The dynamics of small spherical neutrally buoyant particulate impurities
immersed in a two-dimensional fluid flow are known to lead to particle
accumulation in the regions of the flow in which rotation dominates over shear,
provided that the Stokes number of the particles is sufficiently small. If the
flow is viewed as a Hamiltonian dynamical system, it can be seen that the
accumulations occur in the nonchaotic parts of the phase space: the
Kolmogorov--Arnold--Moser tori. This has suggested a generalization of these
dynamics to Hamiltonian maps, dubbed a bailout embedding. In this paper we use
a bailout embedding of the standard map to mimic the dynamics of impurities
subject not only to drag but also to fluctuating forces modelled as white
noise. We find that the generation of inhomogeneities associated with the
separation of particle from fluid trajectories is enhanced by the presence of
noise, so that they appear in much broader ranges of the Stokes number than
those allowing spontaneous separation