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Abstract. The(1, 0) supersymmetry in six dimensions admits a tensor multiplet which contains
a second-rank antisymmetric tensor field with a self-dual field strength and a dilaton. We describe
the fully supersymmetric coupling of this multiplet to a Yang–Mills multiplet, in the absence of
supergravity. The self-duality equation for the tensor field involves a Chern–Simons modified
field strength, the gauge fermions and an arbitrary dimensionful parameter.

PACS numbers: 0465, 1110K, 1130P

1. Introduction

In a spacetime of Lorentzian signature,p-forms with self-dual field strengths can occur in
2 mod 4 dimensions. Thus, restricting our attention to dimensionsD 6 11, a scalar field
in D = 2, an antisymmetric tensor inD = 6 and a 4-form potential inD = 10 can have
self-dual field strengths. Let us refer to these fields as chiralp-forms. Chiral scalars have
been extensively studied in the context of worldsheet string actions. The chiral 4-form
arises in type-IIB supergravity inD = 10. The field equations of this theory have been
worked out [1], and are known to be anomaly-free [2].

The remaining supermultiplets which contain chiralp-forms exist inD = 6. The(1, 0)

supersymmetry admits the following multiplets of this kind¶:

(1, 0) supergravity : (gµν, ψi
µ, B−

µν),

(1, 0) matter : (B+
µν, χ

i, φ),
(1)

where i = 1, 2 is anSp(1) index, andB−
µν and B+

µν are the chiral 2-form potentials with
(anti-) self-dual field strengths. The(2, 0) supersymmetry, on the other hand, admits the
following two multiplets with chiral 2-forms:

(2, 0) supergravity : (gµν, ψi
µ, Bij−

µν ),

(2, 0) matter : (B+
µν, χ

i, φij ),
(2)

where i = 1, . . . , 4 is an Sp(2) index andB
ij−
µν , φij are in the 5-plet representations of

Sp(2).

‖ Supported in part by the US National Science Foundation, under grant PHY-9411543.
¶ For a collection of reprints in which a large class of supermultiplets and their couplings are described, see [3].
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There exist also supermultiplets of(2, 1), (3, 0), (3, 1) and(4, 0) supersymmetry in six
dimensions that contain chiral 2-forms [4], but these are rather strange multiplets whose
field theoretic realizations are unknown, and we shall not consider them any further in this
paper.

In the case of(2, 0) supersymmetry, the equations of motion describing the coupling
of n tensor multiplets to supergravity have been constructed [5]. The only anomaly-free
coupling occurs whenn = 21 [6], in which case the chiral 2-forms transform as a 26-plet of
a globalSO(5, 21) and the scalar fields parametrize the cosetSO(5, 21)/SO(5)×SO(21).
As was shown in [6], this model corresponds to type-IIB supergravity compactified onK3.

In the case of(1, 0) supersymmetry, one can show that an anomaly-free coupling of
any number of tensor multiplets to supergravity is not possible. In fact, considering the
coupling of supergravity ton tensor multiplets,V vector multiplets andH hypermultiplets,
the necessary but not sufficient condition for anomaly freedom is thatH − V + 29n = 273
[3]. (This condition must be satisfied to cancel the trR4 terms in the anomaly polynomial.)
Anomaly-free combinations of multiplets that arise from certain compactifications of
anomaly-freeN = 1, D = 10 supergravity plus Yang–Mills system onK3 have been
considered in [7]. Other anomaly-free combinations, whoseD = 10 origins (if any) are
unknown, have been found in [8]†.

Rather general couplings of the(1, 0) supergravity multiplet to a single tensor matter
multiplet plus an arbitrary number of Yang–Mills and hypermultiplets have been constructed
[11]. In this case, the self-dual and anti-self-dual tensor fields combine to give a single field
strength without any self-duality conditions. In fact, all the anomaly-free models discussed
in [7] are of this type. The only self-dual couplings that are known so far are the following:
(i) pure self-dual supergravity [12], (ii)n tensor multiplets(n > 1) to supergravity [13]
and (iii) coupling ofn tensor multiplets(n > 1) and Yang–Mills multiplets to supergravity
[14]‡. The(1, 0) supergravity by itself is anomalous, but a systematic analysis of anomalies
is required when tensor and Yang–Mills multiplets are coupled. In particular, a generalized
form of the Green–Schwarz anomaly cancellation mechanism, in which a combined action
of all the antisymmetric tensor fields has to be taken into account, was shown to apply in
this case [14].

In this paper, we will focus especially on the coupling of self-dual tensor multiplet to a
Yang–Mills multiplet. One of our motivations for considering this system is the fact it may
play a significant role in the physics of tensionless strings that have emerged inM-theory
compactifications to six dimensions [15]. Moreover, a self-dual string of the type discussed
recently in [17] may also exist with(1, 0) supersymmetric anomaly-free coupling to the
tensor plus Yang–Mills system.

Another motivation for considering the self-dual tensor multiplet couplings in six
dimensions is that they may play a role in the description of the dynamics of a class
of superp-branes. In fact, the(2, 0) tensor multiplet arises as a multiplet of zero-modes
[16] for the 5-brane soliton of [18]. As for the(1, 0) tensor multiplet, it is natural to look
for a super 5-brane soliton in seven dimensions, whose translational zero modes would be
described by the dilaton field contained in this multiplet. In fact, a super 5-brane soliton
in seven dimensions has been found [19]. Although the nature of the zero-mode multiplet
for this soliton has not been established, due to a peculiar asymptotic behaviour, it seems

† Witten [9] has discovered a new mechanism by which a nonperturbative symmetry enhancement occurs, and
a new class of anomaly-free models, not realized in perturbative string theory, emerges in six dimensions.
Schwarz [10] has constructed new anomaly-free models in six dimensions, some of which may potentially arise
in a similar nonperturbative scheme.
‡ We are grateful to Edward Witten for bringing this paper to our attention.
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plausible that it is actually the self-dual tensor multiplet [19].
Matter-modified self-duality equations in six dimensions may also be useful in

developing a further understanding of the electric–magnetic duality symmetry of a matter-
coupledN = 2 supersymmetric Yang–Mills system, in a fashion described in [20] for the
purely bosonic case.

Finally, matter-modified self-duality equations, known as the ‘monopole equations’ [21],
in the context of a topological Yang–Mills plus hyper-matter system inD = 4 [22], have
also appeared in the literature. These equations, among other things, have led to important
developments in the study of Donaldson invariants of 4-manifolds. One may ask the question
if these equations have a six-dimensional origin as well.

Given the above considerations, we are motivated to consider new types of interactions
of the self-dual tensor multiplet inD = 6. We have indeed found that the self-dual
tensor multiplet can consistently be coupled to the Yang–Mills multiplet. To the best of our
knowledge, this coupling has not been noted before in the literature. Of course, the coupling
of the self-duality condition-free tensor multiplet to the Yang–Mills multiplet is known to
occur in supergravity plus Yang–Mills systems in various dimensions, includingD = 6.
However, one cannot simply take the flat spacetime limit to generate the coupling of the
tensor field to the Yang–Mills field, because the latter couples to the former via a Chern–
Simons form which is proportional to the gravitational coupling constant. The novelty of the
construction in this paper is the consideration of an arbitrary dimensionful coupling constant,
and the construction of the interacting self-dual tensor multiplet plus Yang–Mills system
directly by a Noether procedure, without any reference to supergravity. In section 4 of this
paper, we shall comment further on this point and speculate about a possible mechanism that
might yield an interacting global limit of the supergravity models constructed in [11, 14].

The tensor plus Yang–Mills system considered here exhibits supersymmetry even when
the Yang–Mills system is off-shell, while the tensor multiplet is on-shell. In trying to put
the Yang–Mills sector on-shell, we have encountered the following surprising phenomenon:
while the tensor field equations involve the coupling of the Yang–Mills system, the latter
obey the free field equations! We explain this phenomenon by writing down an action
for the coupled system in superspace which involves a Lagrange multiplier superfield that
imposes the self-duality condition, but otherwise decouples from the tensor plus Yang–Mills
system. We also show how this works in component formalism.

In section 2 we will briefly recall the superspace construction of the pure anti-self-
dual (1, 0) supergravity, and the pure self-dual tensor multiplet equations. As an aside,
we will show why the coupling of only Yang–Mills to(1, 0) supergravity is impossible.
We will then proceed to a detailed description of the main result of this paper, namely
the coupling of self-dual tensor multiplet to Yang–Mills multiplet. Here, we shall also
discuss the phenomenon of free supersymmetric Yang–Mills equations being consistent
with self-dual tensor field equations involving Yang–Mills supermultiplet. In section 3, we
will show how the superspace constraints of various self-dual systems considered in this
paper are consistent with theκ-symmetry of the Green–Schwarz superstring inD = 6. We
summarize our results in section 4, which also contains further comments on the issue of the
flat spacetime limit of matter-coupled(1, 0) supergravity inD = 6, and gauge anomalies
in the self-dual tensor plus Yang–Mills system considered in this paper.

2. Self-dual supergravity, tensor multiplet and tensor multiplet coupled to Yang–Mills

We begin by considering a(1, 0) superspace inD = 6 with coordinatesZM = (Xµ, θαi)

whereθαi are symplectic Majorana–Weyl spinors carrying theSp(1) doublet indexi = 1, 2.
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The basic superfields we shall consider are the supervielbeinEA
M , the super 2-form

B = 1
2! dZM ∧dZNBNM and the Lie-algebra-valued Yang–Mills super 1-formA = dZMAM .

(Our conventions for superp-forms are as in [23].) Next we define the torsion super 2-form
T A, the super 3-formH and the Yang–Mills curvature 2-formF :

T A = dEA, H = dB, F = dA + A ∧ A, (3)

which satisfy the following Bianchi identities:

dT A = EB ∧ RA
B, dH = 0, DF = 0, (4)

where RA
B is the Riemann curvature 2-form andD = d + A. Next, we briefly review

the superspace constraints which describe the on-shell pure supergravity and pure tensor
multiplets.

2.1. Pure anti-self-dual supergravity

With the Yang–Mills fieldsA set to zero, the appropriate torsion and curvature constraints
that describe the on-shell pure(1, 0) supergravity theory inD = 6 are given by [24]

T a
αi,βj = 20a

αβεij ,

T c
αi,b = 0, T

γ k

αi,b = 0, T
γ k

αi,βj = 0,

Haαi,βj = −2(0a)αβεij ,

Habαi = 0, Hαi,βj,γ k = 0,

H−
abc = Tabc, H+

abc = 0,

(5)

whereH−
abc is anti-self-dual projected andH+

abc is self-dual projected, i.e.H±
abc = 1

2(Habc ±
H̃abc). For an explicit description of the resulting field equations, we refer the reader
to [12, 13].

2.2. Anti-self-dual supergravity plus Yang–Mills?

We next consider the coupling of pure anti-self-dual supergravity to Yang–Mills, and show
that an inconsistency arises. To this end, let us first define a Chern–Simons modified super
3-form H as follows [25–27]:

H = 1
2 dZM dZN dZP

(
∂P BNM − 1

2α′ tr
(
AP FNM − 2

3AP ANAM

))
, (6)

whereα′ is an arbitrary dimensionful constant. This 3-form satisfies the Bianchi identity

dH = 1
8α′ tr F ∧ F. (7)

To couple Yang–Mills to supergravity, we may impose the constraints (5), with the
replacementH → H everywhere, and in addition we impose theoff-shell super-Yang–
Mills constraint

Fαi,βj = 0. (8)

The Bianchi identityDF = 0 is then solved, as usual, by setting

Faαi = −(0a)αβW
β

i , (9)

where W
β

i is a chiral spinor superfield whose leading component is the gauge multiplet
fermion. Further, the Bianchi identities imply the following structure of the spinor derivative

Di
αWβj = δβ

αY ij + εijF β
α . (10)
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Here Y ij (symmetric in i, j ) and Fβ
α (traceless inα, β) are superfields whose leading

components are the auxiliary fields and the Yang–Mills field strength, respectively.
To see that the system of constraints described above leads to an inconsistency, it is

sufficient to consider the(ab, αi, βj) component of the Bianchi identity (7):

D[aHb]αi,βj + D(αiHβj)ab + T C
αi,βjHCab + T C

αi[aHb]βjC + T C
abHCαi,βj

= 3
4α′ tr FabFαi,βj + 3

4α′ tr Fαi[aFb]βj . (11)

We see that as a result of the constraints (5) and (8), the left-hand side vanishes identically
when symmetrized ini, j , and we are left with the inadmissible equation trWα

(iW
β

j) = 0.

2.3. Pure self-dual tensor multiplet

Again, we begin by settingA = 0. The pure on-shell(1, 0) self-dual tensor multiplet in
D = 6 is then described by the following superspace constraints:

T a
αi,βj = 20a

αβεij ,

Hαi,βj,γ k = 0,

Haαi,βj = −2φ(0a)αβεij ,

Habαi = −(0ab)
β
αDβiφ,

(12)

with all other components ofT C
AB vanishing. Here we have introduced the dilaton superfield

φ. The Bianchi identity dH = 0 is now satisfied provided that

H+
abc = 0

αβ

abcD
i
αDβiφ, (13)

H−
abc = 0, (14)

D(i
α D

j)

β φ = 0. (15)

In [30], it has been shown that the last constraint describes an on-shell self-dual tensor
multiplet. To see this, define the physical components of the superfieldφ as follows:

σ = φ|θ=0, χαi = Dαiφ|θ=0, H+
abc = 0

αβ

abcD
i
αDβiφ|θ=0. (16)

Note that the componentH+
abc in (16) is not, in general, related to the curl of a 2-form. Then

the constraint (13) implies thatH+
abc = (3∂[aBbc])

+. The constraint (14) is the equation of
motion for the self-dual tensor field(∂[aBbc])

− = 0. In fact, all this information, as well as
the remaining field equations�σ = 0 andγ a∂aχi = 0, follow from the last constraint (15).

The quantities appearing in (16) are field strengths. It is also possible to partially
solve these constraints in terms of gauge superfields. To this end we make the following
substitution for the components of the super-2-formB:

Bαib = (0b)αβV
β

i , Bαi,βj = 0. (17)

Inserting this into the constraint equations (13)–(14) we determine the other component of
B,

Bab = (0ab)
β
αDβiV

αi, (18)

and find an expression for the field strengthφ in terms of the potentialV :

φ = DαiV
αi . (19)

We furthermore derive the constraint

σ
ijα

β ≡ D
(j

β V αi) − 1
4δα

βD(j
γ V γ i) = 0 (20)
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on the potential. The latter undergoes gauge transformations which are residues of the
Abelian gauge freedom of the 2-formδB = d3 compatible with the choices (17). The
constraint (20) and the gauge freedom reduce the content of the superfieldV αi to the
potential version of the self-dual tensor multiplet,{Bab, χ

i, σ }, as opposed to the field-
strength multiplet{H+

abc, χ
i, σ } described by the superfieldφ. It is important to realize that

the left-hand sideσ ijα

β (symmetric ini, j and traceless inα, β) of equation (20) automatically
satisfies the constraint

D
(k

(γ σ
ij)α

β) − trace= 0, (21)

where( ) means symmetrization in all the indices involved. This constraint follows from
the spinor derivatives algebra

{Di
α, D

j

β} = 2iεij ∂αβ. (22)

2.4. Self-dual tensor multiplet coupled to Yang–Mills multiplet

Finally, we consider the most interesting case of a self-dual tensor multiplet coupled to a
Yang–Mills multiplet. Compared to the pure self-dual tensor multiplet, we need to add the
Yang–Mills field strengthW . As we already know, this results in Chern–Simons shifts in
the 3-formH . Taking this fact into account, we propose the following constraints:

H+
abc = 0

αβ

abcD
i
αDβiφ, (23)

H−
abc = α′(0abc)αβ tr WαiW

β

i , (24)

D(i
α D

j)

β φ = α′εαβγ δ tr Wγ(iWδj). (25)

These constraints are Yang–Mills modified versions of the constraints (13)–(15), and we
have shown that they do satisfy the Bianchi identities (11). We can also use the self-dual
tensor multiplet potentialV αi introduced in (19) to rewrite equation (23) in the following
form (for simplicity we only give the Abelian expression; the non-Abelian generalization is
straightforward):

D
(j

β V αi) − 1
4δα

βD(j
γ V γ i) = α′(A(j

β Wαi) − 1
4δα

βA(j
γ Wγ i))trace. (26)

Clearly, this constraint is a Yang–Mills modified version of the constraint given in (20). In
it one recognizes the Chern–Simons-type modification due to the Yang–Mills sector. The
reason why such a coupling is consistent can be traced back to theoff-shell super-Yang–
Mills constraint (8) and its consequence (10). Indeed, it is easy to check that the right-hand
side of equation (26) satisfies the same constraint (21) as its left-hand side. Note also that
the gauge transformationδAj

β = D
j

β3 of the Yang–Mills superfield in equation (26) should
be accompanied by the compensating transformationδV αi = α′3Wαi of the tensor multiplet
potentialV (this is typical for Chern–Simons couplings).

An important point in the above construction is that it requires the introduction of the
dimensionful parameterα′. Although we call itα′, it is a priori not related to the inverse
string tension. It is natural to expect that this constant gets related to the gravitational
coupling constant or the string tension upon coupling to supergravity. It is not clear to us,
however, how to obtain our results from a particular flat space limit of the supergravity plus
tensor multiplet plus Yang–Mills system of either [11] or [14]. We shall return to this point
again in section 4 of this paper.

We next show how the above coupling of a tensor multiplet to Yang–Mills in superspace
can be translated to components as well. This can be done using standard methods. First,
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the components of the off-shell Yang–Mills multiplet are contained in the field-strength
superfieldWαi as follows:

λαi = Wαi |θ=0, F ab = (0ab)αβDαiW
βi |θ=0, Y ij = D(i

α Wαj)|θ=0. (27)

The supersymmetry transformations of these components are given by†
δAa = −ε̄γaλ,

δλi = 1
80abFabε

i − 1
2Y ij εj ,

δY ij = −ε̄(i0aDaλ
j).

(28)

The corresponding rules for the on-shell self-dual tensor multiplet coupled to the Yang–Mills
multiplet are given by

δσ = ε̄χ,

δχi = 1
480

abcH+
abcε

i + 1
40a∂aσεi − 1

4α′ tr 0aλi ε̄0aλ,

δBab = −ε̄0abχ − α′ tr A[aε̄0b]λ,

(29)

where

Habc = 3∂[aBbc] + 3α′ tr(A[a∂bAc] + 1
3AaAbAc),

H±
abc = 1

2(Habc ± H̃abc).
(30)

As in the case of the free self-dual tensor multiplet (13)–(15), it is not hard to see that
equations (23)–(25) imply the following field equations for the coupled self-dual-tensor–
Yang–Mills system:

H−
abc = − 1

2α′ tr(λ̄0abcλ), (31)

0a∂aχ
i = α′ tr( 1

40abFabλ
i + Y ijλj ), (32)

�σ = α′ tr(− 1
4FabFab − 2λ̄0aDaλ + Y ijYij ). (33)

Note that the first constraint leads to the following (dependent) identity:

∂[aH+
bcd] = α′ tr( 3

4F[abFcd] − λ̄0[abcDd]λ). (34)

We have verified that the commutator of two supersymmetry transformations (29) closes
on all components of the tensor multiplet modulo the field equations (31)–(33). It is worth
mentioning that equation (31) is already needed for the closure of the supersymmetry algebra
on the tensor fieldB, and equation (32) is needed for the closure onχ . The last equation
can then be derived from the supersymmetry variation of equation (32).

The supersymmetry algebra can be expressed as follows:

[δ(ε1), δ(ε2)] = δ(ξa) + δ(3) + δ(3a), (35)

where the translation parameterξa, the tensor gauge transformation parameter3a and the
gauge parameter3 are given by

ξa = 1
2 ε̄20

aε1, 3a = ξbBba + σξa, 3 = −ξa3a, (36)

and the tensor gauge transformation takes the form

δ3Bab = − 1
2α′ tr 3(∂aABb − ∂bAa). (37)

It should be emphasized that the Yang–Mills system is off-shell, while the tensor
multiplet is on-shell in the coupled system described above. To put Yang–Mills on-shell,

† We use the notation and conventions of [31]. In particular, note that(A, λ, Yij ) take values in the Lie algebra
of the corresponding gauge group, and that the contraction ofSp(1) indices in fermionic bilinears is suppressed.
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it is natural to impose a condition on the auxiliary fieldYij . Normally, one would set
Yij + χ(iλj) = 0 [31]. Here, we encounter a surprise: the supersymmetric variation of this
constraint yields terms of the typeα′ελ3 that cannot be absorbed into the field equation of
λ. It turns out that the solution to this problem is to impose the condition

Y ij = 0. (38)

This is indeed surprising because it leads to the pure super Yang–Mills equations

0aDaλ = 0, DaF
ab + 2[λ̄, 0bλ] = 0. (39)

This peculiarity of the coupling of the on-shell self-dual tensor multiplet to the off-shell
Yang–Mills multiplet is best explained in superspace language. Theon-shellconstraint (20)
of the self-dual tensor multiplet can be obtained from the following action:

S =
∫

d6x d8θ L
β

αij [D(j

β V αi) − trace], (40)

whereL
β

αij is a Lagrange multiplier superfield symmetric inij and traceless inαβ. Variation
of the action with respect to this superfield yields the desired constraint equation (20). At
the same time, variation of the action with respect toV implies

D
j

βL
β

αij = 0. (41)

This equation propagates the other half (i.e. the anti-self-dual part) of the tensor multiplet
contained in the Lagrange multiplier superfield. Note that the Lagrange multiplier in the
action equation (40) has the gauge invariance

δL
β

αij = Dk
γ 3

(γβ)

(ijk)α (42)

with parameter3 totally symmetric inijk and γβ and traceless inαβ, αγ . This gauge
invariance corresponds to the ‘conservation law’ (21) of the left-hand side of equation (20).
Having written down the free tensor multiplet action (40), we can immediately introduce
the Yang–Mills coupling (26) into it:

S =
∫

d6x d8θ L
β

αij [D(j

β V αi) − α′A(j

β Wαi) − trace]+ SYM kin. term, (43)

where the last term symbolizes the kinetic term for the super-Yang–Mills multiplet†. One
needs to make sure that the coupling term is consistent with the gauge invariance (42) of
the Lagrange multiplier. This is indeed true, as follows from the argument given after
equation (26). It is very important to realize that this argument only involves theoff-
shell super-Yang–Mills constraint (8), which is not modified by the coupling to the tensor
multiplet. Clearly, variation with respect toL of the action (43) gives the field equation of
the self-dual tensor multiplet coupled to the super-Yang–Mills multiplet. At the same time,
variation with respect toV still produces thefree field equation (41) for the anti-self-dual
multiplet. Finally, the variation of the action with respect to the fields of the Yang–Mills
supermultiplet gives a modification to the free super-Yang–Mills field equation which is
proportional to the Lagrange multipliers. Now, sinceL

β

αij does not couple to anything, we
can consistently set it equal to zero, once we have derived all the field equations. This
means that on-shell the pure super-Yang–Mills equations are not modified at all.

† We shall not need the explicit form of this kinetic term. Note that in six-dimensional superspace it can be
written in the form of a ‘superaction’ [30],

∫
d6x D(αiD

i
β)W

αjW
β
j which does not involve a Grassmann integral.
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It is instructive to exhibit the component version of the above result. First we write the
field equations (31)–(33) of the self-dual tensor multiplet in the following form:

G−
abc ≡ H−

abc + 1
2α′ tr(λ̄0abcλ) = 0,

0i ≡ 0a∂aχ
i − α′ tr( 1

40abFabλ
i + Y ijλj ) = 0,

X ≡ �σ − α′ tr(− 1
4FabFab − 2λ̄0aDaλ + Y ijYij ) = 0.

(44)

In showing the supersymmetry of these equations, we have in effect derived the following
transformation rules:

δG−
abc = − 1

2 ε̄0abc0,

δ0i = 1
80abεi∂cG−

abc + 1
4εiX,

δX = ε̄0a∂a0.

(45)

We now introduce a second tensor multiplet with components{ρ, ψi , h+
abc} and

supersymmetry rules

δρ = ε̄ψ,

δψi = 1
480

abch+
abcε

i + 1
40a∂aρεi,

δh+
abc = − 1

2 ε̄0d∂d0abcψ.

(46)

It is then easy to show that the following Lagrangian is supersymmetric:

L(1) = h+
abcG

−
abc + 24ψ̄0 − 6ρX. (47)

Note that the equation of motion forBab reads∂ah+
abc, which implies thathabc is a field

strength for a potentialCab, namelyhabc = 3∂[aCbc] .
The SYM Lagrangian, which is separately supersymmetric, is given by

L(2) = α′ tr(− 1
4FabFab − 2λ̄0aDaλ + Y ijYij ). (48)

The LagrangianL = L(1) + L(2) describes the supersymmetric tensor plus Yang–Mills
coupled system. Since we have already shown that the total Lagrangian is supersymmetric,
the supersymmetric Yang–Mills field equations are guaranteed to transform into each other.
These equations are determined by the following on-shell equation for the auxiliary scalars
Y ij :

(1 + 6ρ)Y ij = −12ψ̄(iλj). (49)

Strictly speaking, we havetwo tensor multiplets coupled to SYM (the Lagrange multipliers
are propagating)†. The second tensor multiplet can be consistently set equal to zero,
however, and that yields the results derived earlier by superspace methods, namely
equations (38), (39) and (31)–(33).

3. Six-dimensional superstring in self-dual backgrounds

In this section we will show that theκ-symmetry of the six-dimensional Green–Schwarz
superstring is consistent with the backgrounds described above. The action, including the
coupling of a background non-Abelian Yang–Mills field, is given by

S =
∫

d2ξ
[− 1

2φ
√−ggmnEa

mEa
n + 1

2εmn∂mZM∂nZ
NBNM − 1

2α′(
√−ggmn + ρmn) tr JmJn

+α′εmn(tr ∂myILI ∂nZ
MAM + 1

2∂myI ∂ny
J bIJ )

]
. (50)

† This is not surprising, since it is well known that actions for self-dual fields can only be written with the help
of propagating Lagrange multipliers [32].



2884 E Bergshoeff et al

Here ξm = (τ, σ ) are the worldsheet coordinates,gmn is the worldsheet metric and
Ea

m = ∂mZM(ξ)Ea
M(Z). The fieldρmn(ξ) is a Lagrange multiplier whose role is to make

the group coordinate bosons chiral [29]. It satisfies the conditionρmn = P
mp
+ P

nq
+ ρpq , where

P+mn = 1
2(gmn + √−gεmn) is the projector for self-duality on the world sheet. The Lie

algebra valued 1-form

Jm = ∂myILI − ∂mZMAM (51)

contains the group vielbeinsLI (y). The curl of the 2-formbIJ (y) gives the structure
constants of the groupG.

The κ-symmetry transformation rules are given by [27]

δZMEa
M = 0,

δZMEαi
M = 0αβ

a Ea
mεijP mn

+ κn,βj ,

δyILI = δZMAM,

δρmn = −δ(
√−ggmn),

δ(
√−ggmn) = 2

√−gP
mp
+ P

nq
+ [−2Eαi

p + Ea
p(−uαi

a + 0αβ
a hi

β)

− 2α′φ−1(2
√−ggpr + ρpr) tr(J rWαi)]κq,αi .

(52)

Hereκm,αi(ξ) is the transformation parameter anduαi
a (Z) andhαi(Z) are arbitrary superfields

[28].
The invariance of the action (50) under theκ-symmetry transformations (52) imposes

the following constraints on the background superfields [28]:

T c
αiβj = 2(0c)αβεij , Tαi(bc) = u

β

i(b0c)βα + ηbc(hαi − 1
2φ−1Dαiφ),

Hαiβjγ k = 0, Haαiβj = −2φ(0a)αβεij ,

Habαi = −2φ(0ab)
β
αhβi + 2φu

β

i[a0b]βα,

Fαiβj = 0, Faαi = −(0a)αβW
β

i .

(53)

We now observe that the constraints (5), which describe pure anti-self-dual supergravity,
are consistent with theκ-symmetry constraints (53). To see this, we setφ = 1 and
uαi

a = hαi = Wαi = 0 in (53).
We also observe that the constraints (12), which describe pure self-dual tensor multiplet,

are consistent with theκ-symmetry constraints (53). To see this, we setuαi
a = Wαi = 0

andhαi = 1
2φ−1Dαiφ.

Finally, to see that the self-dual tensor multiplet coupled to Yang–Mills is consistent
with the κ-symmetry constraints (53), we setuαi

a = 0 andhαi = 1
2φ−1Dαiφ in (53).

4. Conclusions

In this paper we have constructed the coupling of self-dual tensor multiplet to Yang–
Mills in six dimensions. This result is surprising in the sense that common experience
teaches us that Yang–Mills Chern–Simons terms usually occur only when a supergravity
system is coupled to a matter multiplet. The dimensionful parameter in front of the Chern–
Simons term is then proportional to the gravitational coupling constantκ and, when gravity
is turned off, the Chern–Simons coupling disappears. This phenomenon is somewhat
reminiscent, however, of globally supersymmetric sigma models in four dimensions which
contain the dimensionful scalar self-coupling constantFπ . At least, in the case ofN = 1
supersymmetric sigma models, it is known thatFπ gets quantized in units of the gravitational
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coupling constantκ, upon coupling to supergravity [33]. Interestingly enough, this relation
does not always occur, as was pointed out by Bagger and Witten [34], who showed that
scalar self-couplings allowed in globalN = 2 supersymmetry are forbidden in supergravity,
and vice versa. Assuming that the latter case does not occur in our model, one may expect
that thea priori arbitrary dimensionful coupling constantα′ may indeed get related toκ
upon coupling to supergravity, or to the inverse string tensionα′, in its dual formulation.
Nonetheless, as mentioned earlier, it is not clear to us at present how to obtain our results
from a flat space limit of any known matter-coupledD = 6 supergravity theory. It
is conceivable that certain stringy constants that arise in the model of [14], which are
essentially undetermined by supersymmetry, may play a role in defining the global limit
sought.

It would also be interesting to see whether there is a natural interpretation of our
dimensionful parameter within the context of a tensionless string in six dimensions [15], or
a super 5-brane theory whose world-volume degrees of freedom would coincide with those
described in our model.

An interesting feature of the tensor–Yang–Mills coupling we constructed in this paper
is that the self-duality condition for the antisymmetric tensor (see equation (31)) is modified
by the Yang–Mills sector. To be precise it contains the following two contributions from
the Yang–Mills sector: (i) the definition ofH contains a Yang–Mills Chern–Simons term
and (ii) the right-hand side of the self-duality condition contains a bilinear in the Yang–
Mills fermions. Such Yang–Mills modified self-duality conditions are reminiscent of the
monopole equations occurring in [21]. Another potentially interesting connection is that
certain properties of electromagnetic duality of Maxwell’s theory in four dimensions can
be naturally understood by regarding the theory as a dimensional reduction of a self-dual
tensor in six dimensions [20].

In this paper, we have also shown that (i) the coupling of Yang–Mills system to pure
anti-self-dual supergravity is not possible, (ii) the constraints describing pure anti-self-dual
supergravity or self-dual tensor multiplet, or coupled self-dual tensor multiplet plus Yang–
Mills system are consistent with the constraints that are imposed by theκ-symmetry of the
six-dimensional Green–Schwarz superstring action, and (iii) the surprising phenomenon that
while the tensor field equations involve the coupling of the Yang–Mills system, the latter
obey the free field equations.

We conclude with a remark on anomalies in the self-dual tensor plus Yang–Mills system
considered in this paper. The only possible local anomaly is the gauge anomaly due
to the minimal coupling of the Yang–Mills field with the chiral gauge fermions. The
anomaly polynomial is thus proportional to(dimG) tr F 4. The associated gauge anomaly
can be cancelled by the Green–Schwarz mechanism provided that the anomaly polynomial
factorizes as(tr F 2)2. As shown by Okubo [35], this factorization is possible only for the
gauge groupsE8, E7, E6, F4, G2, SU(3), SU(2), U(1), or any of their products with each
other.
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