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The dynamics of small spherical neutrally buoyant particulate impurities immersed in a
two-dimensional fluid flow are known to lead to particle accumulation in the regions of the flow in
which vorticity dominates over strain, provided that the Stokes number of the particles is sufficiently
small. If the flow is viewed as a Hamiltonian dynamical system, it can be seen that the
accumulations occur in the nonchaotic parts of the phase space: the Kolmogorov—Arnold—Moser
tori. This has suggested a generalization of these dynamics to Hamiltonian maps, dubbed a bailout
embedding. In this paper we use a bailout embedding of the standard map to mimic the dynamics
of neutrally buoyant impurities subject not only to drag but also to fluctuating forces modeled as
white noise. We find that the generation of inhomogeneities associated with the separation of
particle from fluid trajectories is enhanced by the presence of noise, so that they appear in much

broader ranges of the Stokes number than those allowing spontaneous separaZod2 ©
American Institute of Physics[DOI: 10.1063/1.1480441

Impurities suspended in a fluid flow are frequently ob-
served to be distributed inhomogeneously. Even in very
chaotic flows, particulate impurities arrange themselves
in extraordinarily structured distributions, in apparent
contradiction to the high mixing efficiency expected from
the characteristics of the basic flow. To give just one ex-
ample, in the particular instance of geophysical fluids, the
filamentary structure, or patchiness, often displayed by
plankton populations in the oceans is a puzzling problem
currently under intense investigation!~3 Several mecha-
nisms to produce this type of inhomogeneity have been
studied, and include dynamical aspects of the flow as well
as the reactive properties of the considered impurities.
The basic idea in many of these mechanisms is that the
particle loss due either to the flow—in open flows—or to
the chemical or population dynamics of the particles—in
closed flows—is minimized on some manifolds associated
with the hyperbolic character of the flow.*® In this paper
we explore an alternative purely dynamical mechanism
for inhomogeneity with nonreactive particles in bounded
flows. We show that particle inertial effects combined
with fluctuating forces are capable of producing inhomo-
geneity even in cases in which the impurity and fluid den-
sities match exactly.
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I. INTRODUCTION

When impurities have a different density to the fluid, it is
intuitively clear that they will be expelled from rapidly ro-
tating regions of the flow—for heavy particles—or attracted
to the centers of these regions—for light particles—because
of centrifugal effects. However, it was recently demon-
strated that neutrally buoyant particles also tend to settle in
the rotation(vorticity)-dominated regions of a flow, but by a
more subtle mechanism involving the separation between the
fluid and particle trajectories that can occur in the opposite
regions, i.e., in the areas of the flow dominated by stfain.
However, this mechanism is only relevant when the flow
gradients are of the order of the particle drag coefficient, a
condition that may not be fulfilled in some physically inter-
esting situations. We show here by means of a minimal
model that this condition may be relaxed if a small amount
of noise is added to the forces acting on the impurity.

Our approach is qualitative, in the sense that instead of
considering a specific flow and the precise particle dynamics
induced by it, we describe the system with an iterative map
whose evolution contains the basic features of both the fluid
flow and the particle dynamics: flow volume preservation,
together with particle separation in the hyperbolic regions.
The reason for moving to a discrete system is that in the map
the phenomena that we describe may be understood more
intuitively, while translating the results back to the flow case
is immediate. The strategy of attempting to understand fluid-
dynamical phenomena by using iterated maps amenable to
the powerful artillery of dynamical-systems theory has
proved successful on several different occasions. For ex-
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ample, the structures of the chaotic advection induced byierev represents the velocity of the particle that of the
time-periodic three-dimensional incompressible flows werdluid, p, the density of the particlgy; the density of the fluid
predicted by studying the qualitatively equivalent dynamicsit displaces,v the kinematic viscosity of the fluida, the
of three-dimensional volume-preserving map$. Later,  radius of the particle, and, gravity. The terms on the right-
these structures were confirmed in realistic fldWs2Other  hand side of Eq(1) represent, respectively, the force exerted
examples are the treatment of the propagation of combustiooy the undisturbed flow on the particle, buoyancy, Stokes
fronts in laminar flows by a qualitative map approdéland  drag, the added mass due to the boundary layer of fluid mov-
the description of the formation of plankton population struc-ing with the particle®?® and the Basset—Boussinesq
tures due to inhomogeneities of the nutrient souféeRe-  force?>??that depends on the history of the relative accelera-
markably, in the instance we discuss in this paper, the protions of particle and fluid. The terms ir?V2u are the
cedure is also useful from the point of view of dynamical- Faxen®® corrections. The Maxey—Riley equation is derived
systems theory, as it has suggested a new technique—bailounnder the assumptions that the particle radius and its Rey-
embedding—for the control of Hamiltonian chafs. nolds number are small, as are the velocity gradients around
The plan of the paper is as follows. First, we briefly the particle.
review the classical model for the forces acting on a small  First let us consider a minimal model for a neutrally
spherical particle moving relative to the fluid in which it is buoyant particle. For this we sp,=p; in Eq. (1). We con-
immersed, and, concentrating on the case of a neutrallgider the Fake corrections and the Basset—Boussinesq term
buoyant impurity, we trace the construction of a minimalto be negligible. We now rescale space, time, and velocity by
model that makes evident the separation of particle and fluidcale factord., T=L/U, andU, to arrive at
trajectories in the regions in which the flow presents strong
strain(Sec. I). On the basis of this model, we make a gen- d_V_ %_St—l i E(dv %)
L . . . = (v—u) ,
eralization that allows us to build a discrete mapping that dt Dt

represents the Lagrangian evolution of the fluid parcels as , . 5
well as the dynamics of the partickSec. Il). While this ~Where St is the particle Stokes number=2&°U/(9»L)

map displays particle—fluid separation when the bailout pa= 2/9(a/L)?Re;, Rg being the fluid Reynolds number. The

rametery, a function of the Stokes number, is relatively 3SSUmptions involved in deriving E{l) require that S&1
small, we show in Sec. IV that a small amount of noise," EQ- (4). _ _ S
added to the dynamics of the particle to separate it continu- | We substitute the expressions for the derivatives in
ally from the flow, enhances the impact of the hyperbolicEdS:(2) and(3) into Eq. (4), we obtain

regions far beyond the values gfrequired for separation in

the deterministic case. Section V extends and formalizes —(v—u)=—((v—u)-V)u—y(v—u), (5)
these ideas with analytical arguments. Our conclusions are to

be found in Sec. VI.

4

where we have writteny=2/3St . We may then writeA
=v—u, whence
II. MAXEY—-RILEY EQUATIONS AND MINIMAL MODEL

dA
The equation of motion for a small, spherical particle in dt (J+ 1A, (6)
an incompressible fluid we term the Maxey—Riley
equatiorf"8which may be written as wherel is the velocity gradient matrix—we now concentrate
dv DU N ) 9up; azvz ) on two-dimensional flowsi= (u,,u,)—
—=pi= - ——=—|v—u——V-u
Pt~ Pipr T PeT PO Sz 6 [ dxux ayux) @
Pt ( dv. D a®_, ) dyly  dyuy)”
Y a7 u _V u . . . . . .
2\dt Dt[ 10 If we diagonalize this matrix, and heuristically assume that
2 the dependence on time of the diagonalizing transformation
9p; [v(t 1 d a . . :
— _— u——Vvauld¢ is unimportant, we obtain
2a VwJo\t—¢d¢d 6 '
dA A—vy 0
) d—f=( 0 o )-AD, (8)
where the derivativ®u/Dt is along the path of a fluid ele- 4
ment so if Re\)>v, Ap may grow exponentially. Now satisfies
DU Ju detd—\1)=0, so N?—trJ+detJ=0. Since the flow is in-
Di- EHU.V)U’ (2)  compressible, dgyu+dyu,=trJ=0, thence —\2=detJ.

Given squared vorticityw?= (d,u,— d,u,)®, and squared
whereas the derivativéu/dt is taken along the trajectory of strain 32=s§+s§, where the normal component $$= d,u,

the particle — dyuy and the shear componentsig= d,u,+ d,u, , we may
write
du du Y 3
gt gt TV © Q=\2=—detJ=(s?— w?)/4, 9)
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where Q is the Okubo—Weiss parameféf® If Q>0, \? of the above-described impurity dynamics. Given a map
>0, and\ is real, deformation dominates, as around hyperx,,;=T(X,)—x being a point in a space of arbitrary
bolic points, whereas iQ<0, A2<0, and \ is complex, dimension—a bailout embedding is the second-order recur-

rotation dominates, as near elliptic points. rence
Equation(6), together withdx/dt=A+u, define a dis-

Sipati\/e dynamica| system Xn+2— T(Xn+ 1) = K(Xn)(xn-i—l_ T(Xn))u (13)
dgdt=F(&t) (100  whereK(x) is chosen such th#K (x)|>1 over the unwanted

set of orbits, so that they become unstable in the embedding.
In this discrete system, almost any expression written for the
ordinary differential equation, Eq6), translates to some-
thing close to an exponential; in particular, stability eigenval-
ues have to be negative in the ordinary-differential-equation
ase to represent stability, while they have to be smaller than
ne in absolute value in the map case. In order to simulate
the dynamics of particles, the operatofJ+ yl) in the con-
inuous system should translate into the particular choice

with constant divergence-F= — 2+ in the four dimensional
phase spacé=(x,y,As,Ay), so that while small values of
St—large values ofy—allow for large values of the diver-
gence, large values of St—small valuesyefforce the di-
vergence to be small. The Stokes number is the relaxatio
time of the particle back onto the fluid trajectories compare
to the time scale of the flow—uwith larger &mallery), the
particle has more independence from the fluid flow. Fro
Eq. (8), about areas of the flow near hyperbolic stagnation
points with Q> 2, particle and flow trajectories separate K(x)=e VT (12
exponentially. The result is that the particle can overcome .
Stokes drag and abandon the fluid trajectories in the neighl the map setting. _ _ S
borhood of the saddle points, to finally end up in a regular ~ TO represent qualitatively a chaotic two-dimensional in-
region of the flow. This effect implies that particles tend to cOmpressible base flow we choose a classical testbed of
stay away from the regions of strongest strain. Hamiltonian sysigms, the area preserving standard map in-
In earlier wor it was shown that when the flow is troduced by Chirikov and Taylor:
chaotic—for example for two-dimensional time-periodic in- )
compressible flows—it is a consequence of this phenomenon i Yn) = (Xn+1.Yne 1), (13
that particles asymptotically settle on invariant tori, and, inwhere
general, explore the ordered regions of the base flow. In the
following, we investigate further this behavior in a qualita- X =t Lsin(ZTry )
tive but more general framework based on iterative map LTI o n
modeling of the dynamics. (14)
Ynt1=YntXnt1,

IIl. DISCRETE DYNAMICS DESCRIPTION gndk is the paramete_r contr_olling integrability. Recall that.,
in general, the dynamics defined by this map present a mix-

An examination of the dynamical system defining ourture of quasiperiodic motions occurring on the Kolmogorov—
minimal model for the behavior of neutrally buoyant par- Arnold—Moser(KAM) tori, and chaotic ones, depending on
ticles shows that it is composed of some dynamics withirthe initial conditions. As the value o is increased, the
some other larger set of dynamics. Equatidncan be seen region dominated by chaotic trajectories pervades more and
as an equation for a variabke that defines another equation more of the phase space, except for increasingly small is-
of motion, v=u, for a fluid element, whe is zero. The lands of KAM quasiperiodicity. Our qualitative description
inner dynamics is that representing the Lagrangian trajectosf the impurity dynamics, the bailout embedding of the stan-
ries of the flow, and in two dimensions it is a Hamiltonian dard map, is given by the coupled second-order iterative sys-
system. We may say that this Hamiltonian system—the fluidem defined by Eqg11)—(14).
flow—is embedded in a larger dynamical system—the fluid—  Due to the area-preserving nature of the standard map,
particle system—this time dissipative, whose trajectorieghe two eigenvalues of the derivative matrix must multiply to
may or may not converge to zero. If they do, the system endsne. If they are complex, this means that both have an abso-
up on the same trajectories as those of the smaller embedd&de value of one, while if they are real, generically one of
system, but in general this need not be the case. The concepiem will be larger than one and the other smaller. We can
of some dynamics embedded within some other dynamicthen separate the phase space into elliptic and hyperbolic
may be exploited within the framework of dynamical- regions corresponding to each of these two cases. If a trajec-
systems theory to design techniques to reject unwanted traery of the original map lies entirely in the elliptic regions,
jectories of the original dynamics by making them unstablethe overall factor exp{y) damps any small perturbation
in the embedding, paralleling what the particles do in theaway from it in the embedded system. But for chaotic trajec-
fluid-dynamical case. We have dubbed this idea, which hatories that inevitably visit some hyperbolic regions, there ex-
obvious applications to control and targeting, a bailout emists a value ofy such that, fory smaller than this, perturba-
bedding of a dynamical systetf. tions away from a standard-map trajectory are amplified

Trading generality for clarity, in this section we presentinstead of dying out in the embedding. As a consequence,
an example of a bailout embedding for discrete-time dynamithese trajectories are expelled from the chaotic regions fi-
cal sytems that closely represents all the qualitative aspectslly to settle in the elliptic KAM islands.
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071F etc., renders the system ergodic with only a uniform invari-
ant measure. Thus, the distribution of fluid parcels is ex-
pected to be uniform with or without the presence of noise.
The situation is, however, very different if the noise is ap-
plied to the dynamics of the particles, or, correspondingly, to
the bailout embedding.

Consider the following stochastic discrete-time dynam-
ics

0.61"
-0.05 0.05 -0.05 0.05
@ (b) in which, as in Sec. llIx represents the particle coordinates
and T(x) the fluid parcel evolution. New here is the noise
term &,, with statistics

Xn+2_T(Xn+1):e_VVT|xn(Xn+1_T(Xn))+§nr (15)

0.71)

(£)=0, (&&m=e(1—e 2")5nm,l. (16)

This term forces the particle away from the fluid trajectory at
every step of the dynamics. However, the actual magnitude
of the fluctuations induced i will be modulated by the
properties ofVT—the flow gradients—along the particle tra-
jectory. For practical reasons we shall use the convention of
varying the noise intensity in correspondence wjtim order
to obtain comparable fluctuations at different values of this
© @ parameter.
FIG. 1. The standard map fd=7 has a chaotic sea covering almost the We cgnadgr the_ standard me’.ip as modeling the b.aS|C
entire torus, except for a tiny period-two KAM island near position 0,2/3. flow, and its noisy bailout embedding to represent a particu-
1000 random initial conditions were chosen and iterated for 20000 stepdate impurity subject to both fluid drag and noise forces. We
then the next 1000 iterations are showa. Original map,(b) y=1.4,(©)  gre interested in the asymptotic behavior of an ensemble of
y=13.d y=12. such particles which, by the ergodicity of the fluctuations,
should be well represented by the histogram of visits that a

To illustrate this, Fig. 1 shows the phenomenon in aSingle particle pays over time to each bin of the space—the
situation in which the nonlinearity parameter has been set t8/ll Phase space for the basic flow, but a projection of the full
the valuek= 7. This corresponds to a very chaotic regime ofPhase space for the particles. _ _
the standard map, characterized by the existence of minute Figure 2 displays a sequence of these histograms in a
KAM islands within a sea of chaos that covers almost all theScaled color code for the same nonlinearity parameter,
available phase space. Figuré&)lis a close-up image—to =7., as in Fig. 1, corresponding .to the _extremely chaotic
make it easily visible—of the largest of these islands, and théegime of the standard map considered in Sec. lll. The se-
dots there represent the successive positions of a set of 10§/€nce of images corresponds to decreasing bailout param-
fluid parcels spread initially at random over the unit cell, €t y. The images make evident the fine filamentary struc-
evolving according to the standard map. Since none of thesir® developed by the asymptotically invariant distributions
parcels were initially located inside the island, this is seen agu€ t0 the combined effects of noise and the ability of par-
a white region never visited by the parcels. In contrast, irficles to separate from the basic flow. Remarkably, hovyever,
Figs. 1b)—1(d), the dots are the successive positions, after &N€S€ structures appear even when thealues are outside
number of equilibration iterations, of particles initially the range required to produce a spontaneous detachment of
placed as the parcels were in Figall but allowing a very the particle trajectories without noise. _
small initial discrepancyy,=x; — T(X,) between the two dy- Thg filamentation here arises from the existence 'of av-
namics. Now, although having started initially outside the€nues in the phase space that lead to the small KAM islands
island, some of the particles settle inside, in a process th& which the particles prefer to stay. A more detailed analysis

becomes increasingly marked as the bailout paramets- shows that on these avenues the average value of the squared
creases. separation between particle and fluid trajectories is relatively

small. Roughly parallel to these avenues, on the other hand,
there are strips of the phase space that the particles avoid.
There, the separation between particle and fluid trajectories
By virtue of volume preservation, the invariant measureis on average much larger. Filamentation is thus due to the
of the fluid-parcel dynamics is either uniform, if the systemtendency of the particles to avoid neighboring regions.
is ergodic, or else disintegrates into a foliation of KAM tori The same mechanism may also lead to patchiness, not
and ergodic regions. In any case, the addition of a smalhecessarily filamentary. For flows with weaker chaos, for ex-
amount of white noise, which may be considered to represergmple, for which relatively large KAM islands coexist with
the effects of small scale turbulence, thermal fluctuationscomparably sized regions of chaos, a situation such as that at

-0.05 0.05 -0.05 0.05

IV. NOISY DYNAMICS
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FIG. 2. (Color) Histograms with intensity encoding as the square root of

invariant probability. Parameters are standard-map nonlinearity parameter

k=7, noise parameter=10"8, and bailout parametéa) y=1.6, (b) 1.55,

(c) 1.5,(d) 1.4,(e) 1.3, and(f) 1.2. The striped color scale runs from pink at .0 A

high densities to blue at low densities. 0.5 (g 05 0.5 (h) (.4
1oF :

k=1.5, shown in Fig. 3, is typical. In the histograms, there

are relatively small avoided regions that separate large
patches of greater concentrations of particles around the non- ’
chaotic islands. This picture is also testimonial to a property

that distinguishes the present mechanism for producing inho-
mogeneity from others mentioned earflérWhile in those

cases the particles group around the unstable manifolds 011III ’ ’ L
the homoclinic intersections of the basic flows, here the im- 0.5 i) 0.5 05 i 03
purity dynamics instead tend to avoid the invariant r‘nani'FlG. 3. (Color) Histograms(left-hand sidé and temperature plot§ight-
folds. This is because following these manifolds would meamand sidgfor standard map nonlinearity parameker 1.5, noise parameter
eventually hitting regions in which the velocity gradient ei- =10"%, and bailout parametes), (b), y=0.7; (c), (d), y=0.65; (e), (f),
genvalues are closer to one, which locally amplifies the ef>=0:6: (@. (h). y=0.55; and(), (j), y=0.5. The striped histogram color

fect of fluctuati the d . f th ticl scale runs from yellow at high densities to cyan at low densities, while the
€ct of fluctuations on the dynamics o € parucles. temperature color scale runs from rédgh) to blue (low).

(or, equivalently, of the bailout parametdreyond the range

for which this phenomenon occurs in deterministic systems
We have seen earlier that inhomogeneities in the distriwhen a relatively small amount of noise is added to the par-

bution of particles may arise at values of the Stokes numbseticle dynamics, and hence, more generally, to the bailout dy-

V. DETACHMENT AND AVOIDANCE
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namics. We show in the following that there are two stages to (82 * 2
the modulation of the invariant density in the small-noise  7(X)= Z (e Iy H VT|t- k(x)) . (23
limit as the bailout parameter is decreased. At first the bailout (¢ > 1=0
is everywhere stable, as the bailout parameter is not smaithus7(x) defines a sort of temperature for the fluctuatiéns
enough to occasion that the particle trajectories detach from As long as thed are infinitesimally small, they do not—
the fluid ones, but fluctutations around this stable embeddingnd cannot—affect the dynamics, which has collapsed onto
may be restored toward the stable manifold at different rateshe classical trajectories; thus they do not influence the in-
and thus acquire different expectation values. These fluctuasariant densityP(x) either, and henc®(x) is asymptotic to
tions leave a mark on the invariant density through a mechahe Lebesgue measure. For infinitesimally sméf), asy is
nism similar to spatially modulated temperat@?é/ namely, made smaller, the sum acquires more and more terms be-
the dynamics prefer to escape the hot regions. This is bakause the prefacta ” decays more and more slowly. For
anced in a nontrivial fashion by mixing in the dynamics to any value ofy, the products of the gradients grow or shrink
create interesting scars in the invariant density. As the bailoutoughly as the exponential of the Lyapunov exponent times
parameter is lowered, the noise prefactor can diverge, thg Thus, wheny equals the local Lyapunov exponentathe
embedding loses stability at some points, and detachmeskries definingr(x) stops being absolutely convergentxat
ensues. and may blow up. Asy is lowered further, more and more
In order to analyze this critical transition, we proceed pointsx have local Lyapunov exponents greater thamnd
with the map approximation with the conviction that gener-so 7(x) formally diverges at more and more points
alizing this analysis to the continuous-time limit is straight- ~ Wherer(x) =2 it means that §2) is finite even if(£)
forward. We can separate the two-step recurrence(Es), s infinitesimally small. Thus the embedding trajectories have
into two one-step recurrences, detached from the actual trajectories, and the above-given
X0 =T(X)+ & 17) apprqximation_s.break down. petachment i; the process that
n+l n n we first envisioned as being characteristic of bailout
S,i1=€ 7VT|xn5n+ & . (18 embeddings® However, by employing noise in the embed-
ding, and carefully controlling its use, we can see the process
The second equation is affine, being linear in ®@lus a  that occurs before detachment.fx) is finite and smaller
homogeneously added noise process, so it could be solvedan 1(§2>, then we have a regime in which tl#&s behave
analytically for & if we knew what thex were in the past. as a noise term added to the classical trajectongs;
Under the assumption that tl&are infinitesimally small, we  =T(x,) + 8, with (62)=(&)7(x).
get the classical orbits, ;= T(x,), and we can write down We have lost the whiteness of the noise process, since
explicitly the solution for thes, 8,+1 and &, are not any longer statistically independent.
_ _ However, this is secondary to the fact that the noise process
Gea= &t e VTl X (61 eIV amplitude, being modulat)e/d as a function of positioﬁ, will

X (& o+ VTl (& 3+))), (199  immediately lead to inhomogeneity in the dynamics: hot re-
n-2 gions will be avoided while cold regions will preserve the
or, after unwrapping, dynamics. All of this is in a context in which the embedding

is essentially stable throughout. Thus this process is not de-

=&t VTl &t eﬁ&VT'"nVT'Xn—1§"*2 tachmentper se but rather avoidance.

+e VT VT, VT, & s+, (20 We can illustrate this best in the cor!text of the standard
n n-2 map acting as before as the base flow. Figure 3 shows side by
which may be written more compactly as side the visit histogram—the invariant measur@ef-hand

sidg together with the corresponding space-dependent tem-
perature(right-hand sidg for a decreasing sequence of the
bailout parametery and fixed values of the standard-map
nonlinearity and noise parameters. While, fptarger than
0.55, the temperature is a well-defined function of the space
coordinates, it shows signs of divergence—the red regions,
(82) o o] 2 which become larger ay decreases—fory smaller than
2 2 (e”H VT, . (22 0.55. On the other hand, however, the invariant measure dis-
(&) = k=0 " plays features related to the structurerobn both sides of

where the(-) are averages over the process. Clearly, as this transition, i.e., even before detachment occurs.
y—oo, this expression tends to 1.
I2n the regime in whichy>0 and(£)<1, the (62, ,) V1. DISCUSSION AND CONCLUSIONS

~(£&)<1 and hence the trajectories collapse upon the clas-
sical orbits:x, . 1=T(X,) + d,=T(X,). Under these circum- It has previously been demonstrated that small neutrally
stances, the embedding is always stable, and there is no dedoyant particles immersed in a fluid flow, and therefore

tachment. In this regime we can compute explicitly thesubject to drag forces, may follow trajectories that spontane-
above-given expression, E@2), which depends only on the ously separate from those of the fluid parcels in some regions
current value of the position: of the flow. Specifically, this occurs when the strain is very

(21)

n J
5n+1:2 (‘fnjewH VTlxn,k .
j=0 k=0

Then, given that th& are uncorrelated, the expectation value
of 62 is given as the sum of the squares of the terms, or
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