88 research outputs found

    Contribution of hypoxia to Alzheimer's disease: is HIF-1α a mediator of neurodegeneration?

    Get PDF
    The mammalian brain is extremely sensitive to alterations in cellular homeostasis as a result of environmental or physiological insults. In particular, hypoxic/ischemic challenges (i.e. reduced oxygen and/or glucose delivery) cause severe and detrimental alterations in brain function and can trigger neuronal cell death within minutes. Unfortunately, as we age, oxygen delivery to cells and tissues is impaired, thereby increasing the susceptibility of neurons to damage. Thus, hypoxic (neuronal) adaptation is significantly compromised during aging. Many neurological diseases, such as stroke, Alzheimer's disease (AD), Parkinson's disease and diabetes, are characterized by hypoxia, a state that is believed to only exacerbate disease progression. However, the contribution of hypoxia and hypoxia-mediated pathways to neurodegeneration remains unclear. This review discusses current evidence on the contribution of oxygen deprivation to AD, with an emphasis on hypoxia inducible transcription factor-1 (HIF-1)-mediated pathways and the association of AD with the cytoskeleton regulator cyclin-dependent kinase 5. (Part of a multi-author review.

    Pivotal Role of Reduced Glutathione in Oxygen-induced Regulation of the Na + /K + Pump in Mouse Erythrocyte Membranes

    Get PDF
    This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl− and Na+-K+-2Cl− cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activit

    Effects of Organic Turmeric on Liver Integrity and Oxidative Stress of the Brain in Rabbits Exposed to Ultraviolet Radiation

    Full text link
    This project investigated the effects of organic turmeric on the liver and oxidative stress of the brain in rabbit acutely exposed to ultraviolet radiation. Thirty five weaned rabbits between 8-10 weeks of age, randomly allocated to control (A) and five (5) treatments: B, C, D, E and F were used for this experiment. Treatment A: fed organic feed without turmeric inclusion and not radiated, Treatment B: fed diet supplemented with 2% turmeric as its constituents but not radiated, Treatment C: fed organic feed without turmeric inclusion before but after radiation, Treatment D: fed organic feed without turmeric inclusion before and after radiation. Treatment E: fed diet supplemented with 2% turmeric before but not after radiation. Treatment F: fed diet supplemented with 2% turmeric before and after radiation. There were significant (

    Temporal Rac1 – HIF-1 crosstalk modulates hypoxic survival of aged neurons

    Full text link
    Neurodegenerative diseases are frequently associated with hypoxic conditions. During hypoxia the neuronal cytoskeleton is rapidly reorganized and such abnormalities are directly linked to adverse outcomes. Besides their roles as master regulators of the cytoskeleton, the Rho GTPases are also involved in cellular processes stimulated by hypoxic stress. We investigated the contribution of Rac1-mediated signaling to hypoxic responses of mature neurons using primary cortical cells cultured for 17 days in vitro. We show Rac1 is both upregulated and activated during hypoxia. Pharmacological inhibition of Rac1, but not RhoA, completely abrogated hypoxic HIF-1α stabilization and expression of the HIF-1 targets VEGF and GLUT1. Furthermore activity of JNK and GSK3β were also highly dependent on Rac1 activity and biphasic effects were observed after 6 and 24 h of exposure. Notably, inhibition of either pathway suppressed HIF-1α accumulation. Although inhibition of Rac1 did not affect neuronal viability during acute exposure cell death was strongly induced after 24 h revealing a time-dependent effect of Rac1 signaling on survival. Thus hypoxia-activated Rac1 is critical for neuronal HIF-1α stabilization and survival during oxygen deprivation via integration of complex signaling cascades

    Cdk5 interacts with Hif-1α in neurons: A new hypoxic signalling mechanism?

    Full text link
    The cyclin dependent kinase 5 (Cdk5)/p35 complex is essential for regulation of cell survival during development and in models of neuronal excitotoxicity. Dysregulation of Cdk5, by cleavage of its neuronal specific activators p35 and p39, has been implicated in various neurodegenerative disorders such as Alzheimer's disease, however targets of the complex that regulate neuronal survival physiologically and/or during pathogenesis are largely unknown. Since hypoxia is a key feature in the pathogenesis of several neuronal disorders we investigated a role for Cdk5/p35 in the neuronal hypoxic response. Our data shows that hypoxia modulates the p35/Cdk5 complex in primary cortical neurons at the transcriptional and protein level. Furthermore hypoxic induction of Cdk5 activity correlates with Hif-1α stabilisation, and direct interaction between these proteins can occur. Importantly, we demonstrate that Cdk5-mediated signaling is involved in Hif-1α stabilisation since inhibition of Cdk5 by roscovitine abrogates Hif-1α accumulation and induces cell death. Taken together our results show that the Cdk5/p35 complex may significantly contribute to modulation of Hif-1α stabilisation and impact neuronal survival during oxygen deprivation. Thus this study highlights a new hypoxia-mediated signaling pathway and implicates the cytoskeleton as a potential regulator of Hif-1α. Section: Cellular and Molecular Biology of Nervous Systems

    Furin inhibition prevents hypoxic and TGFβ-mediated blood-brain barrier disruption

    Full text link
    Hypoxic blood-brain barrier (BBB) dysfunction is a common feature of CNS diseases however mechanisms underlying barrier disturbance are still largely unknown. This study investigated the role of transforming growth factor β (TGFβ), a cytokine known to induce expression of the proprotein convertase Furin, in hypoxia-mediated barrier compromise.We show that exposure of brain endothelial cells (ECs) to hypoxia (1% O2) rapidly stimulates their migration. Additional exogenous TGFβ (0.4nM) exposure potentiated this effect and increased Furin expression in a TGFβ type I receptor activin-like kinase 5 (ALK5) - dependent manner (prevented by 10μM SB431542). Furin inhibition prevented hypoxia-induced EC migration and blocked TGFβ-induced potentiation suggesting existence of a feedback loop. TGFβ and Furin were also critical for hypoxia-induced BBB dysfunction. TGFβ treatment aggravated hypoxia-induced BBB permeability but ALK5 or Furin blockade reversed injury-induced permeability changes. Thus during insult Furin compromises endothelial integrity by mediating the effects of TGFβ. Targeting the Furin or ALK5 pathway may offer novel therapeutic strategies for improving BBB stability and CNS function during disease

    Transcryptomic Analysis of Human Brain-Microvascular Endothelial Response to -Pericytes: Cell Orientation Defines Barrier Function

    Get PDF
    Pericytes facilitate blood–brain barrier (BBB) integrity; however, the mechanisms involved remain unclear. Hence, using co-cultures of human cerebral microvascular endothelial cells (ECs) and vascular pericytes (PCs) in different spatial arrangements, as well as PC conditioned media, we investigated the impact of PC-EC orientation and PC-derived soluble factors on EC barrier function. We provide the first evidence that barrier-inducing properties of PCs require basolateral contact with ECs. Gene expression analysis (GEA) in ECs co-cultured with PCs versus ECs alone showed significant upregulation of 38 genes and downregulation of 122 genes. Pathway enrichment analysis of modulated genes showed significant regulation of several pathways, including transforming growth factor-β and interleukin-1 regulated extracellular matrix, interferon and interleukin signaling, immune system signaling, receptor of advanced glycation end products (RAGE), and cytokine–cytokine receptor interaction. Transcriptomic analysis showed a reduction in molecules such as pro-inflammatory cytokines and chemokines, which are known to be induced during BBB disruption. Moreover, cytokine proteome array confirmed the downregulation of key pro-inflammatory cytokines and chemokines on the protein level. Other molecules which influence BBB and were favorably modulated upon EC-PC co-culture include IL-18 binding protein, kallikrein-3, CSF2 CSF3, CXCL10, CXCL11 (downregulated) and IL-1-R4; HGF, PDGF-AB/BB, PECAM, SERPIN E1 (upregulated). In conclusion, we provide the first evidence that (1) basolateral contact between ECs and PCs is essential for EC barrier function and integrity; (2) in ECs co-cultured with PCs, the profile of BBB disrupting pro-inflammatory molecules and cytokines/chemokines is downregulated; (3) PCs significantly modulate EC mechanisms known to improve barrier function, including TGF-β regulated ECM pathway, anti-inflammatory cytokines, growth factors and matrix proteins. This human PC-EC co-culture may serve as a viable in vitro model for investigating BBB function and drug transport

    CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection

    Get PDF
    HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3(+) T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8(+) T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART
    • …
    corecore