69 research outputs found

    The Spatial Dimension of US House Price Developments

    Full text link
    Spatial heterogeneity and spatial dependence are two well established aspects of house price developments. However, the analysis of differences in spatial dependence across time and space has not gained much attention yet. In this paper we jointly analyze these three aspects of spatial data. We apply a panel smooth transition regression model that allows for heterogeneity across time and space in spatial house price spillovers and for heterogeneity in the effect of the fundamentals on house price dynamics. We find evidence for heterogeneity in spatial spillovers of house price developments across space and time: house price developments in neighboring regions spill over stronger in times of increasing neighboring house prices compared to declining neighboring house prices. This is interpreted as evidence for the disposition effect. Moreover, heterogeneity in the effect of the fundamentals on house price dynamics could not be detected for all variables; real per capita disposable income and the unemployment rate have a homogeneous effect across time and space

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Serglycin in functional assays.

    No full text
    <p>(A) Proliferative capacity of serglycin knockdown cells (siSRGN) compared to scrambled controls (siCtr), n = 5. (B) HUVEC were subjected to 10% cyclic stretch for 4 and 24 hours respectively, and the response in serglycin expression was determined by qRT-PCR (FlexCell) and compared to controls (Ctr), n = 3–11. (C) Serglycin mRNA expression (qRT-PCR) and protein (ICC) in serglycin knockdown (siSRGN) in HUVEC was compared to scrambled controls (siCtr), n = 6. (D) Control and serglycin knockdown cells were subjected to an in vitro angiogenesis assay. Left panel show the quantification of tube length and loop numbers by Wimasis Image Analysis. The right panels show a representative picture of in vitro angiogenesis assay showing tube formation capacity on BME gel in siSRGN HUVEC and siCtr, n = 4. (E) Gene expression of SRGN (left) and ANG2 (right) in hypoxia compared to normoxia in triplicates from each of two cell donors. (F) Closure of scratch wound in control cells compared to siSRGN cells. Left panel show percent wound closure after 6 hours, and right panel show representative phase-contrast images of scratch wound at 0 and 6 hours after wounding, n = 3. Results are presented as mean with SEM denoted by vertical bars, and <i>p</i>-values < 0.05 were taken as a significant difference using the Students paired <i>t</i>-test. * <i>p</i><0.05, ** <i>p</i><0.01, *** <i>p</i><0.001, ns: not significant.</p

    CCL2 secretion from polarized cells.

    No full text
    <p>HUVEC from three different donors were polarized on semipermeable filters. Confluent monolayers were untreated (Ctr) or incubated with IL-1β for 24 hours. CCL2 content in apical (AP) and basolateral (BL) conditioned media was compared.</p

    Cellular proliferative state.

    No full text
    <p>HUVEC were cultured in low (sparse) and high (dense) densities. (A) Illustration of the morphology of sparse (left panel) and dense (right panel) HUVEC. (B) Gene expression of quiescence marker IL33 and proliferation marker MKI67 in sparse relative to dense cell cultures determined by qRT-PCR in material from six donors. (C) Staining for IL-33 in dense culture (right panel) and sparse culture (left panel) visible as magenta, costained with DAPI nuclear staining visible as blue. The pictures were acquired using a confocal microscope at 60X magnification. (D) The proliferation rate was assessed by applying the MTS-assay on cell cultures of increasing densities from four donors. (E) Cell mortality rate was determined with the LDH-assay for 5 donors in both sparse (upper panel) and dense (lower panel) cell cultures. All data are presented as means with SEM, and statistical significant differences (<i>p</i> < 0.05) was tested with Students paired <i>t</i>-test and denoted by *. The scale bars indicates 100 and 50 μm respectively.</p

    Serglycin and CCL2 distribution in unstimulated and stimulated cells.

    No full text
    <p>HUVEC were cultured on chamber slides for 24 hours without (Ctr) or with IL-1β. The cells were fixed and stained, and pictures were acquired using a Zeiss LSM 700 confocal laser scanning microscope at 62x magnification. These are representative results from cells isolated from three different donors. (A) The left panel show cells stained for serglycin in red and CCL2 in green. The right panel show the negative control stained with secondary antibodies only. These pictures are Z-stacks showing the distribution of the target proteins throughout the cells. (B) The panels show untreated (top) and IL-1β stimulated (bottom) HUVEC cultures, fixed and immunostained for serglycin (green) and CCL2 (red). The left and middle panels show serglycin and CCL2 staining, respectively. The right panel shows the overlay (merge) of serglycin and CCL2. These pictures are the view from the middle of the cells, were both target proteins are expressed equally. The scale bar indicates 10 μm.</p
    corecore