14,019 research outputs found
"It's the real thing": performance and murder in Sweden.
The article investigates contemporary experimental theatre in Sweden. It sums up and probes the implications of Sju tre (1999), the most controversial theatre production in Sweden in modern times. Lars Nor'n, the playwright and director, staged a dialogue involving three real convicts, of whom two were outspoken Nazis. The article explores the uncertain boundaries between aesthetic, ethical, and political issues with ramifications regarding the wider public opinion in Sweden, on racism and crime. It is methodologically motivated by reception research, performativity and idealogical discourse. By virtue of its performative impact, the theatrical event proved to be directly linked with critical questions of democracy, although conceivably at the expense of the artistic integrity of the director and the theatre as creator of public opinion. The article points to a paradox of democracy whereby hate speech is at once allowed and unjustified in the theatre as national arena. The actors are described and analysed as parasites in a societal body, that in Sju tre, becomes politically epitomised
Crystal-field effects in the first-order valence transition in YbInCu4 induced by an external magnetic field
As it was shown earlier [Dzero, Gor'kov, and Zvezdin, J. Phys.:Condens.
Matter 12, L711 (2000)] the properties of the first-order valence phase
transition in YbInCu4 in the wide range of magnetic fields and temperatures are
perfectly described in terms of a simple entropy transition for free Yb ions.
Within this approach, the crystal field effects have been taken into account
and we show that the phase diagram in the plane acquires some anisotropy
with respect to the direction of an external magnetic field.Comment: 4 pages, 3 eps figures; minor changes; to be piblished in J. of
Physics: Cond. Ma
Resonant ratcheting of a Bose-Einstein condensate
We study the rectification process of interacting quantum particles in a
periodic potential exposed to the action of an external ac driving. The
breaking of spatio-temporal symmetries leads to directed motion already in the
absence of interactions. A hallmark of quantum ratcheting is the appearance of
resonant enhancement of the current (Europhys. Lett. 79 (2007) 10007 and Phys.
Rev. A 75 (2007) 063424). Here we study the fate of these resonances within a
Gross-Pitaevskii equation which describes a mean field interaction between many
particles. We find, that the resonance is i) not destroyed by interactions, ii)
shifting its location with increasing interaction strength. We trace the
Floquet states of the linear equations into the nonlinear domain, and show that
the resonance gives rise to an instability and thus to the appearance of new
nonlinear Floquet states, whose transport properties differ strongly as
compared to the case of noninteracting particles
Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions
The internally electrodynamic (IED) particle model was derived based on
overall experimental observations, with the IED process itself being built
directly on three experimental facts, a) electric charges present with all
material particles, b) an accelerated charge generates electromagnetic waves
according to Maxwell's equations and Planck energy equation and c) source
motion produces Doppler effect. A set of well-known basic particle equations
and properties become predictable based on first principles solutions for the
IED process; several key solutions achieved are outlined, including the de
Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass,
Einstein mass-energy relation, Newton's law of gravity, single particle self
interference, and electromagnetic radiation and absorption; these equations and
properties have long been broadly experimentally validated or demonstrated. A
specific solution also predicts the Doebner-Goldin equation which emerges to
represent a form of long-sought quantum wave equation including gravity. A
critical review of the key experiments is given which suggests that the IED
process underlies the basic particle equations and properties not just
sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
Coherent current transport in wide ballistic Josephson junctions
We present an experimental and theoretical investigation of coherent current
transport in wide ballistic superconductor-two dimensional electron
gas-superconductor junctions. It is found experimentally that upon increasing
the junction length, the subharmonic gap structure in the current-voltage
characteristics is shifted to lower voltages, and the excess current at
voltages much larger than the superconducting gap decreases. Applying a theory
of coherent multiple Andreev reflection, we show that these observations can be
explained in terms of transport through Andreev resonances.Comment: 4 pages, 4 figure
SAURON's Challenge for the Major Merger Scenario of Elliptical Galaxy Formation
The intrinsic anisotropy delta and flattening epsilon of simulated merger
remnants is compared with elliptical galaxies that have been observed by the
SAURON collaboration, and that were analysed using axisymmetric Schwarzschild
models. Collisionless binary mergers of stellar disks and disk mergers with an
additional isothermal gas component, neglecting star formation cannot reproduce
the observed trend delta = 0.55 epsilon (SAURON relationship). An excellent fit
of the SAURON relationship for flattened ellipticals with epsilon >= 0.25 is
however found for merger simulations of disks with gas fractions >= 20%,
including star formation and stellar energy feedback. Massive black hole
feedback does not strongly affect this result. Subsequent dry merging of merger
remnants however does not generate the slowly-rotating SAURON ellipticals which
are characterized by low ellipticities epsilon < 0.25 and low anisotropies.
This indicates that at least some ellipticals on the red galaxy sequence did
not form by binary mergers of disks or early-type galaxies. We show that
stellar spheroids resulting from multiple, hierarchical mergers of
star-bursting subunits in a cosmological context are in excellent agreement
with the low ellipticities and anisotropies of the slowly rotating SAURON
ellipticals and their observed trend of delta with epsilon. The numerical
simulations indicate that the SAURON relation might be a result of strong
violent relaxation and phase mixing of multiple, kinematically cold stellar
subunits with the angular momentum of the system determining its location on
the relation.Comment: 13 pages, 3 figures, submitted to Ap
Palaeoproterozoic adakite- and TTG-like magmatism in the Svecofennian orogen, SW Finland
The Palaeoproterozoic Svecofennian orogen in the Fennoscandian shield is an arc accretionary orogen that was formed at c. 1.92-1.86Ga. Arc accretion, magmatism and the subsequent continent-continent collision thickened the crust up to c. 70km, forming one of the thickest Palaeoproterozic orogens. At the end stage of accretionary tectonics, voluminous synorogenic magmatism occurred in southwestern Finland leading to the intrusion of intermediate to felsic plutonic rocks. Ion microprobe single zircon dating of one diorite sample yielded an age of 1872±3Ma (εNd=+2.2) and the trondhjemite sample an age of 1867±4Ma (εNd=+2.6). Inherited 2667-1965Ma cores and 1842±5Ma metamorphic rims were also found in zircons from the trondhjemite. The dioritic magmatism is mantle-derived and is slightly enriched by subduction-related processes. The felsic magmatism shows elevated Sr/Y and La/Yb ratios, which are typical for adakite- and TTG-like magmas. Their low Mg#, Ni and Cr contents argue against slab-melting and mantle-wedge contamination. We infer that the felsic magmatism was generated through crustal melting of the lower part of the previously generated volcanic-arc type crust. Based on published melting experiments and the Sr and Y contents of the felsic rocks we suggest that the melts were generated at a minimum pressure of 10kbar, with evidence of a 15kbar pressure for the highest Sr/Y trondhjemites. It is proposed that arc accretion combined with magmatic intrusions thickened the crust so that melting of the lower crust yielded adakite- and TTG-like compositions. The mafic magmatism is considered to be the heat source
Single-artificial-atom lasing using a voltage-biased superconducting charge qubit
We consider a system composed of a single artificial atom coupled to a cavity
mode. The artificial atom is biased such that the most dominant relaxation
process in the system takes the atom from its ground state to its excited
state, thus ensuring population inversion. A recent experimental manifestation
of this situation was achieved using a voltage-biased superconducting charge
qubit. Even under the condition of `inverted relaxation', lasing action can be
suppressed if the `relaxation' rate is larger than a certain threshold value.
Using simple transition-rate arguments and a semiclassical calculation, we
derive analytic expressions for the lasing suppression condition and the state
of the cavity in both the lasing and suppressed-lasing regimes. The results of
numerical calculations agree very well with the analytically derived results.
We start by analyzing a simplified two-level-atom model, and we then analyze a
three-level-atom model that should describe accurately the recently realized
superconducting artificial-atom laser.Comment: 21 pages in preprint format, 6 figure
- …