1,513 research outputs found

    The Lorentz and CPT violating effects on the Z\to l^+ l^- decay

    Full text link
    We study the Lorentz and CPT violating effects on the branching ratio BR, the CPT violating asymmetry A_{CPT} and the ratio of the decay width, including only the Lorentz violating effects, to the one obtained in the standard model, for the flavor dependent part of the lepton flavor conserving Z\to l^+ l^- (l=e,\mu,\tau) decay. The inclusion of the Lorentz and CPT violating effects to the standard model contribution is too small to be detected, since the corresponding coefficients are highly suppressed at the low energy scale.Comment: 11 pages, 6 figure

    CPT and Lorentz-invariance violation

    Full text link
    The largest gap in our understanding of nature at the fundamental level is perhaps a unified description of gravity and quantum theory. Although there are currently a variety of theoretical approaches to this question, experimental research in this field is inhibited by the expected Planck-scale suppression of quantum-gravity effects. However, the breakdown of spacetime symmetries has recently been identified as a promising signal in this context: a number of models for underlying physics can accommodate minuscule Lorentz and CPT violation, and such effects are amenable to ultrahigh-precision tests. This presentation will give an overview of the subject. Topics such as motivations, the SME test framework, mechanisms for relativity breakdown, and experimental tests will be reviewed. Emphasis is given to observations involving antimatter.Comment: 6 page

    When the Milky Way turned off the lights: APOGEE provides evidence of star formation quenching in our Galaxy

    Full text link
    Quenching, the cessation of star formation, is one of the most significant events in the life cycle of galaxies. We show here the first evidence that the Milky Way experienced a generalised quenching of its star formation at the end of its thick disk formation \sim9 Gyr ago. Elemental abundances of stars studied as part of the APOGEE survey reveal indeed that in less than \sim2 Gyr the star formation rate in our Galaxy dropped by an order-of-magnitude. Because of the tight correlation between age and alpha abundance, this event reflects in the dearth of stars along the inner disk sequence in the [Fe/H]-[α\alpha/Fe] plane. Before this phase, which lasted about 1.5 Gyr, the Milky Way was actively forming stars. Afterwards, the star formation resumed at a much lower level to form the thin disk. These events are very well matched by the latest observation of MW-type progenitors at high redshifts. In late type galaxies, quenching is believed to be related to a long and secular exhaustion of gas. In our Galaxy, it occurred on a much shorter time scale, while the chemical continuity before and after the quenching indicates that it was not due to the exhaustion of the gas. While quenching is generally associated with spheroids, our results show that it also occurs in galaxies like the Milky Way, possibly when they are undergoing a morphological transition from thick to thin disks. Given the demographics of late type galaxies in the local universe, in which classical bulges are rare, we suggest further that this may hold true generally in galaxies with mass lower than or approximately MM^*, where quenching could be directly a consequence of thick disk formation. We emphasize that the quenching phase in the Milky Way could be contemporaneous with, and related to, the formation of the bar. We sketch a scenario on how a strong bar may inhibit star formation.Comment: 17 pages, 8 figures. Published versio

    Vacuum Cherenkov radiation

    Full text link
    Within the classical Maxwell-Chern-Simons limit of the Standard-Model Extension (SME), the emission of light by uniformly moving charges is studied confirming the possibility of a Cherenkov-type effect. In this context, the exact radiation rate for charged magnetic point dipoles is determined and found in agreement with a phase-space estimate under certain assumptions.Comment: 4 pages, REVTeX

    Protecting backaction-evading measurements from parametric instability

    Full text link
    Noiseless measurement of a single quadrature in systems of parametrically coupled oscillators is theoretically possible by pumping at the sum and difference frequencies of the two oscillators, realizing a backaction-evading (BAE) scheme. Although this would hold true in the simplest scenario for a system with pure three-wave mixing, implementations of this scheme are hindered by unwanted higher-order parametric processes that destabilize the system and add noise. We show analytically that detuning the two pumps from the sum and difference frequencies can stabilize the system and fully recover the BAE performance, enabling operation at otherwise inaccessible cooperativities. We also show that the acceleration demonstrated in a weak signal detection experiment [PRX QUANTUM 4, 020302 (2023)] was only achievable because of this detuning technique.Comment: 7 pages, 3 figure

    Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances

    Full text link
    We develop a chemical evolution model in order to study the star formation history of the Milky Way. Our model assumes that the Milky Way is formed from a closed box-like system in the inner regions, while the outer parts of the disc experience some accretion. Unlike the usual procedure, we do not fix the star formation prescription (e.g. Kennicutt law) in order to reproduce the chemical abundance trends. Instead, we fit the abundance trends with age in order to recover the star formation history of the Galaxy. Our method enables one to recover with unprecedented accuracy the star formation history of the Milky Way in the first Gyrs, in both the inner (R9-10kpc) discs as sampled in the solar vicinity. We show that, in the inner disc, half of the stellar mass formed during the thick disc phase, in the first 4-5 Gyr. This phase was followed by a significant dip in the star formation activity (at 8-9 Gyr) and a period of roughly constant lower level star formation for the remaining 8 Gyr. The thick disc phase has produced as many metals in 4 Gyr as the thin disc in the remaining 8 Gyr. Our results suggest that a closed box model is able to fit all the available constraints in the inner disc. A closed box system is qualitatively equivalent to a regime where the accretion rate, at high redshift, maintains a high gas fraction in the inner disc. In such conditions, the SFR is mainly governed by the high turbulence of the ISM. By z~1 it is possible that most of the accretion takes place in the outer disc, while the star formation activity in the inner disc is mostly sustained by the gas not consumed during the thick disc phase, and the continuous ejecta from earlier generations of stars. The outer disc follows a star formation history very similar to that of the inner disc, although initiated at z~2, about 2 Gyr before the onset of the thin disc formation in the inner disc.Comment: 30 pages, 18 figures, 3 tables, accepted by A&A - minor stylistic change

    Concerns of Ageing and Interest in Assistive Technologies – Convenience Sampling of Attendees at an Aged Care Technology Exhibition in China

    Get PDF
    Part 7: e-Health, the New Frontier of Service Science InnovationInternational audienceAs in many countries, ageing and aged care in China is an important issue. There is a need for more research on the potential for technology to assist older people and their families, particularly given the disappointing levels of adoption in developed countries. Accordingly this paper aims to gain insight into the perceptions of older people and stakeholders in relation to issues of ageing and their interest in adoption of technology. Using convenience sampling, the authors surveyed 277 participants to understand peoples concerns concerning ageing and use of technologies. Results from this study provide a basis for discussion with stakeholders, particularly concerning ageing in China

    Smart Focal Plane Technologies for VLT Instruments

    Full text link
    As we move towards the era of ELTs, it is timely to think about the future role of the 8-m class telescopes. Under the OPTICON programme, novel technologies have been developed that are intended for use in multi-object and integral-field spectrographs. To date, these have been targeted at instrument concepts for the European ELT, but there are also significant possibilities for their inclusion in new VLT instruments, ensuring the continued success and productivity of these unique telescopes.Comment: 5 pages, to appear in the proceedings of the ESO Workshop "Science with the VLT in the ELT era

    Synchronisation in networks of delay-coupled type-I excitable systems

    Full text link
    We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investigate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.Comment: 10 pages, 9 figure

    Single-shot measurement of the Josephson charge qubit

    Full text link
    We demonstrate single-shot readout of quantum states of the Josephson charge qubit. The quantum bits are transformed into and stored as classical bits (charge quanta) in a dynamic memory cell - a superconducting island. The transformation of state |1> (differing form state |0> by an extra Cooper pair) is a result of a controllable quasiparticle tunneling to the island. The charge is then detected by a conventional single-electron transistor, electrostatically decoupled from the qubit. We study relaxation dynamics in the system and obtain the readout efficiency of 87% and 93% for |1> and |0> states, respectively.Comment: submitted to Rapid Communications of Phys. Rev. B (february 2004
    corecore