67 research outputs found

    Macroscopic assembly of indefinitely long and parallel nanowires into large area photodetection circuitry

    Get PDF
    Integration of nanowires into functional devices with high yields and good reliability turned out to be a lot more challenging and proved to be a critical issue obstructing the wide application of nanowire-based devices and exploitation of their technical promises. Here we demonstrate a relatively easy macrofabrication of a nanowire-based imaging circuitry using a recently developed nanofabrication technique. Extremely long and polymer encapsulated semiconducting nanowire arrays, mass-produced using the iterative thermal drawing, facilitate the integration process; we manually aligned the fibers containing selenium nanowires over a lithographically defined circuitry. Controlled etching of the encapsulating polymer revealed a monolayer of nanowires aligned over an area of 1 cm 2 containing a 10 × 10 pixel array. Each light-sensitive pixel is formed by the contacting hundreds of parallel photoconductive nanowires between two electrodes. Using the pixel array, alphabetic characters were identified by the circuitry to demonstrate its imaging capacity. This new approach makes it possible to devise extremely large nanowire devices on planar, flexible, or curved substrates with diverse functionalities such as thermal sensors, phase change memory, and artificial skin. © 2012 American Chemical Society

    Arrays of indefinitely long uniform nanowires and nanotubes

    Get PDF
    Nanowires are arguably the most studied nanomaterial model to make functional devices and arrays. Although there is remarkable maturity in the chemical synthesis of complex nanowire structures, their integration and interfacing to macro systems with high yields and repeatability still require elaborate aligning, positioning and interfacing and post-synthesis techniques. Top-down fabrication methods for nanowire production, such as lithography and electrospinning, have not enjoyed comparable growth. Here we report a new thermal size-reduction process to produce well-ordered, globally oriented, indefinitely long nanowire and nanotube arrays with different materials. The new technique involves iterative co-drawing of hermetically sealed multimaterials in compatible polymer matrices similar to fibre drawing. Globally oriented, endlessly parallel, axially and radially uniform semiconducting and piezoelectric nanowire and nanotube arrays hundreds of metres long, with nanowire diameters less than 15ĝ€‰nm, are obtained. The resulting nanostructures are sealed inside a flexible substrate, facilitating the handling of and electrical contacting to the nanowires. Inexpensive, high-throughput, multimaterial nanowire arrays pave the way for applications including nanowire-based large-area flexible sensor platforms, phase-changememory, nanostructure-enhanced photovoltaics, semiconductor nanophotonics, dielectric metamaterials,linear and nonlinear photonics and nanowire-enabled high-performance composites. © 2011 Macmillan Publishers Limited. All rights reserved

    Differential Cross Sections and Cross-Section Ratios for the Electron-Impact Excitation of the Neon 2p⁔3s Configuration

    Get PDF
    Electron-impact differential cross-section measurements for the excitation of the 2p53s configuration of Ne are reported. The Ne cross sections are obtained using experimental differential cross sections for the electron-impact excitation of the n = 2 levels of atomic hydrogen [Khakoo et al., Phys. Rev. A 61, 012701-1 (1999)], and existing experimental helium differential cross-section measurements, as calibration standards. These calibration measurements were made using the method of gas mixtures (Ne and H followed by Ne and He), in which the gas beam profiles of the mixed gases are found to be the same within our experimental errors. We also present results from calculations of these differential cross sections using the R-matrix and unitarized first-order many-body theory, the distorted-wave Born approximation, and relativistic distorted-wave methods. Comparison with available experimental differential cross sections and differential cross-section ratios is also presented

    OP0291 TOFACITINIB FOR THE TREATMENT OF POLYARTICULAR COURSE JUVENILE IDIOPATHIC ARTHRITIS: RESULTS OF A PHASE 3, RANDOMISED, DOUBLE-BLIND, PLACEBO-CONTROLLED WITHDRAWAL STUDY

    Get PDF
    Background:Tofacitinib is an oral JAK inhibitor that is being investigated for JIA.Objectives:To assess tofacitinib efficacy and safety in JIA patients (pts).Methods:This was a Phase 3, randomised, double-blind (DB), placebo (PBO)-controlled withdrawal study in pts aged 2−<18 years with polyarticular course JIA (pcJIA), PsA or ERA (NCT02592434). In the 18-week open-label Part 1, pts received weight-based tofacitinib doses (5 mg BID or lower). Pts with ≄JIA ACR30 response at Week (W)18 were randomised 1:1 in the DB Part 2 (W18−44) to continue tofacitinib or switch to PBO. Primary endpoint: disease flare rate by W44. Key secondary endpoints: JIA ACR50/30/70 response rates; change from Part 2 baseline (Δ) in CHAQ-DI at W44. Other efficacy endpoints: time to disease flare in Part 2; JADAS27-CRP in Parts 1 and 2. PsA/ERA pts were excluded from these efficacy analyses. Safety was evaluated in all pts up to W44.Results:225 enrolled pts with pcJIA (n=184), PsA (n=20) or ERA (n=21) received tofacitinib in Part 1. At W18, 173/225 (76.9%) pts entered Part 2 (pcJIA n=142, PsA n=15, ERA n=16). In pcJIA pts, disease flare rate in Part 2 was significantly lower with tofacitinib vs PBO by W44 (p=0.0031; Fig 1a). JIA ACR50/30/70 response rates (Fig 1b) and ΔCHAQ-DI (Fig 1c) at W44, and time to disease flare in Part 2 (Fig 2a), were improved with tofacitinib vs PBO. Tofacitinib reduced JADAS27-CRP in Part 1; this effect was sustained in Part 2 (Fig 2b). Overall, safety was similar with tofacitinib or PBO (Table): 77.3% and 74.1% had adverse events (AEs); 1.1% and 2.4% had serious AEs. In Part 1, 2 pts had herpes zoster (non-serious) and 3 pts had serious infections (SIs). In Part 2, SIs occurred in 1 tofacitinib pt and 1 PBO pt. No pts died.Conclusion:In pcJIA pts, tofacitinib vs PBO resulted in significantly fewer disease flares, and improved time to flare, disease activity and physical functioning. Tofacitinib safety was consistent with that in RA pts.Table.Safety in all ptsPart 1Part 2TofacitinibaN=225TofacitinibaN=88PBO N=85Pts with events, n (%)AEs153 (68.0)68 (77.3)63 (74.1)SAEs7 (3.1)1 (1.1)2 (2.4)Permanent discontinuations due to AEs26 (11.6)16 (18.2)29 (34.1)AEs of special interest Death000 Gastrointestinal perforationb000 Hepatic eventb3 (1.3)00 Herpes zoster (non-serious and serious)2 (0.9)c00 Interstitial lung diseaseb000 Major adverse cardiovascular eventsb000 Malignancy (including non-melanoma skin cancer)b000 Macrophage activation syndromeb000 Opportunistic infectionb000 SI3 (1.3)1 (1.1)d1 (1.2) Thrombotic event (deep vein thrombosis, pulmonary embolismbor arterial thromboembolism)000 Tuberculosisb000a5 mg BID or equivalent weight-based lower dose in pts <40 kgbAdjudicated eventscBoth non-seriousdOne SAE of pilonidal cyst repair was coded to surgical procedures instead of infections, and was inadvertently not identified as an SI. Following adjudication, the SAE did not meet opportunistic infection criteria; it is also included in the table as an SIAE, adverse event; BID, twice daily; PBO, placebo; pts, patients; SAE, serious AE; SI, serious infectionAcknowledgments:Study sponsored by Pfizer Inc. Medical writing support was provided by Sarah Piggott of CMC Connect and funded by Pfizer Inc.Disclosure of Interests:Nicolino Ruperto Grant/research support from: Bristol-Myers Squibb, Eli Lily, F Hoffmann-La Roche, GlaxoSmithKline, Janssen, Novartis, Pfizer, Sobi (paid to institution), Consultant of: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lily, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sanofi, Servier, Sinergie, Sobi, Takeda, Speakers bureau: Ablynx, AbbVie, AstraZeneca-Medimmune, Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lily, EMD Serono, GlaxoSmithKline, Hoffmann-La Roche, Janssen, Merck, Novartis, Pfizer, R-Pharma, Sanofi, Servier, Sinergie, Sobi, Takeda, Olga Synoverska Speakers bureau: Sanofi, Tracy Ting: None declared, Carlos Abud-Mendoza Speakers bureau: Eli Lilly, Pfizer Inc, Alberto Spindler Speakers bureau: Eli Lilly, Yulia Vyzhga Grant/research support from: Pfizer Inc, Katherine Marzan Grant/research support from: Novartis, Vladimir Keltsev: None declared, Irit Tirosh: None declared, Lisa Imundo: None declared, Rita Jerath: None declared, Daniel Kingsbury: None declared, BetĂŒl Sözeri: None declared, Sheetal Vora: None declared, Sampath Prahalad Grant/research support from: Novartis, Elena Zholobova Grant/research support from: Novartis and Pfizer Inc, Speakers bureau: AbbVie, Novartis, Pfizer Inc and Roche, Yonatan Butbul Aviel: None declared, Vyacheslav Chasnyk: None declared, Melissa Lerman Grant/research support from: Amgen, Kabita Nanda Grant/research support from: Abbott, AbbVie, Amgen and Roche, Heinrike Schmeling Grant/research support from: Janssen, Pfizer Inc, Roche and USB Bioscience, Heather Tory: None declared, Yosef Uziel Speakers bureau: Pfizer Inc, Diego O Viola Grant/research support from: Bristol-Myers Squibb, GSK, Janssen and Pfizer Inc, Speakers bureau: AbbVie and Bristol-Myers Squibb, Holly Posner Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Keith Kanik Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Ann Wouters Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Cheng Chang Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Richard Zhang Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Irina Lazariciu Consultant of: Pfizer Inc, Employee of: IQVIA, Ming-Ann Hsu Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Ricardo Suehiro Shareholder of: Pfizer Inc, Employee of: Pfizer Inc, Alberto Martini Consultant of: AbbVie, Eli Lily, EMD Serono, Janssen, Novartis, Pfizer, UCB, Daniel J Lovell Consultant of: Abbott (consulting and PI), AbbVie (PI), Amgen (consultant and DSMC Chairperson), AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb (PI), Celgene, Forest Research (DSMB Chairman), GlaxoSmithKline, Hoffman-La Roche, Janssen (co-PI), Novartis (consultant and PI), Pfizer (consultant and PI), Roche (PI), Takeda, UBC (consultant and PI), Wyeth, Employee of: Cincinnati Children's Hospital Medical Center, Speakers bureau: Wyeth, Hermine Brunner Consultant of: Hoffman-La Roche, Novartis, Pfizer, Sanofi Aventis, Merck Serono, AbbVie, Amgen, Alter, AstraZeneca, Baxalta Biosimilars, Biogen Idec, Boehringer, Bristol-Myers Squibb, Celgene, EMD Serono, Janssen, MedImmune, Novartis, Pfizer, and UCB Biosciences, Speakers bureau: GSK, Roche, and Novarti

    Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebo-controlled study

    Get PDF
    Objective To assess the efficacy/safety of tofacitinib in adult patients with active ankylosing spondylitis (AS).Methods This phase III, randomised, double-blind, placebo-controlled study enrolled patients aged >= 18 years diagnosed with active AS, meeting the modified New York criteria, with centrally read radiographs, and an inadequate response or intolerance to >= 2 non-steroidal anti-inflammatory drugs. Patients were randomised 1:1 to receive tofacitinib 5 mg two times per day or placebo for 16 weeks. After week 16, all patients received open-label tofacitinib until week 48. The primary and key secondary endpoints were Assessment of SpondyloArthritis international Society >= 20% improvement (ASAS20) and >= 40% improvement (ASAS40) responses, respectively, at week 16. Safety was assessed throughout.Results 269 patients were randomised and treated: tofacitinib, n=133; placebo, n=136. At week 16, the ASAS20 response rate was significantly (p tofacitinib, 2 (1.5%) patients had non-serious herpes zoster. There were no deaths, malignancies, major adverse cardiovascular events, thromboembolic events or opportunistic infections.Conclusions In adults with active AS, tofacitinib demonstrated significantly greater efficacy versus placebo. No new potential safety risks were identified.Pathophysiology and treatment of rheumatic disease

    Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children

    Get PDF
    Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C

    Disease-specific composite measures for psoriatic arthritis are highly responsive to a Janus kinase inhibitor treatment that targets multiple domains of disease

    Get PDF
    Background: The multiple disease domains affected in psoriatic arthritis (PsA) may make composite endpoints appropriate for assessing changes in disease activity over time. Tofacitinib is an oral Janus kinase inhibitor for the treatment of PsA. Data from two phase 3 studies of patients with PsA were used to evaluate the effect of tofacitinib on composite endpoints. Methods: Oral Psoriatic Arthritis triaL (OPAL) Broaden was a 12-month study of tumor necrosis factor inhibitor (TNFi)-naĂŻve patients with an inadequate response to at least one conventional synthetic disease-modifying anti-rheumatic drug; OPAL Beyond was a 6-month study of patients with inadequate response to TNFi. Patients with active PsA received tofacitinib 5 or 10 mg doses twice daily (BID), adalimumab 40 mg subcutaneous injection once every 2 weeks (OPAL Broaden only), or placebo advancing at month 3 to tofacitinib 5 or 10 mg BID. The disease-specific composites were Psoriatic Arthritis Disease Activity Score (PASDAS), Disease Activity Index for Reactive Arthritis/Psoriatic Arthritis (DAPSA), and Composite Psoriatic Disease Activity Index (CPDAI). Change from baseline in composite endpoints was also assessed for minimal disease activity (MDA) responders versus non-responders. Results: Overall, 422 patients from OPAL Broaden and 394 patients from OPAL Beyond were treated. The mean changes from baseline to month 3 for tofacitinib 5 mg BID, tofacitinib 10 mg BID (standard error; effect size) were OPAL Broaden: PASDAS, −2.0 (0.14; 1.73), −2.4 (0.14; 2.4); DAPSA, −20.2 (1.72; 0.9), −24.4 (1.73; 1.23); and CPDAI, −2.9 (0.34; 1.03), −4.2 (0.36; 1.53); OPAL Beyond: PASDAS, −1.9 (0.14; 1.53), −2.1 (0.14; 1.84); DAPSA, −22.5 (1.67; 0.81), −21.0 (1.70; 0.84); and CPDAI, −3.3 (0.31; 1.41), −3.4 (0.31; 1.45). Greater changes from baseline to month 3 (P ≀0.05) were seen with both doses of tofacitinib versus placebo for all endpoints except CPDAI for tofacitinib 5 mg BID in OPAL Broaden. Effect sizes generally increased from 3 to 6 months. Mean changes from baseline were greater in MDA responders than MDA non-responders for all composite endpoints across all time points and treatments. Conclusions: This analysis suggests that disease-specific composite measures are appropriate for evaluating treatment efficacy on multiple disease domains in PsA. Trial registration: OPAL Broaden: ClinicalTrials.gov Identifier: NCT01877668, first posted June 12, 2013; OPAL Beyond: ClinicalTrials.gov Identifier: NCT01882439, first posted June 20, 2013

    A Prospective Six-Year Clinical Study Evaluating Reinforced Glass Ionomer Cements with Resin Coating on Posterior Teeth:Quo Vadis?

    No full text
    WOS: 000387340400003PubMed ID: 27571238Objective: The aim of this study was to evaluate the long-term clinical performance of two encapsulated glass ionomer cements (GICs) (EquiaFil and Riva SC) covered with two different coatings (Equia Coat and Fuji Varnish) over six years using modified US Public Health Service (USPHS) criteria. Methods: Fifty-four patients having class I and II restorations/caries were included in the study. A total of 256 restorations were made with EquiaFil and Riva SC. Equia Coat or Fuji Varnish was used randomly on the surface of the restorations. After cavity preparations, the teeth were randomly restored with one GIC and coated with Equia Coat or Fuji Varnish. The restorations were evaluated at baseline; six, 12, and 18 months; and six years after placement using modified USPHS criteria. Two evaluators checked color match, marginal discoloration, marginal adaptation, caries formation, anatomical form, postoperative sensitivity, and retention rate, and photographs were taken at each recall. The results were evaluated with Pearson chi-square and Mann-Whitney U-test (p<0.05). Results: Thirty-seven patients were evaluated. There was a significant difference between EquiaFil and Riva SC regarding retention rate and color match after six years (p=0.033 and 0.046). When comparing baseline to six years, the overall success of EquiaFil was better than Riva SC, having significant problems regarding retention rate and anatomical form (p=0.016 and 0.031). Class II cavities were significantly worse in marginal adaptation, anatomical form, and retention rate in the Riva SC groups (p=0.033, 0.015, and 0.007) but not in the EquiaFil groups. The combination of the coatings had no effect on the overall success of the materials. Conclusions: The EquiaFil system was more successful than Riva SC regarding color match, marginal adaptation, anatomic form, and retention rate after a six-year clinical evaluation period
    • 

    corecore