74 research outputs found

    Relationships within aphids Cinara (Cupressobium) (Hemiptera) based on mitochondrial and nuclear DNA sequences

    Get PDF
    The relationships between Cinara (Cupressobium) aphids inhabiting woody parts and leaves of conifers belonging to Cupressaceae have been studied using a mitochondrial gene (COI) and a nuclear gene (EF1-α). Based on the COI sequences, genetic distances between species ranged from 5.6 % between Cinara (C.) tujafilina (del Guercio) and Cinara (C.) juniperi (De Geer) to 10.5 % between C. (C.) tujafilina and Cinara (C.) mordvilkoi (Pašek). Genetic distances among EF1-α sequences were lower and showed from 0.1 % between C. cupressi and C. juniperi to 2.3 % between C. tujafilina and C. mordvilkoi. Molecular phylogenetic trees were constructed using the Bayesian inference (BI) phylogenetic analysis and maximum parsimony (MP) criterion. Phylogenetic trees obtained based on COI and EF1-α marker genes created two sister clades. Our results indicate that Cinara (Cupressobium) are a monophyletic group of aphids. Phylogenetic relationships amongst Cupressobium aphids do not result from the association with the host plant, but from the feeding site on the host plant or an ability to change the microhabitat on the plant. As closely related species inhabit similar microhabitats on different host plants, it suggests that the host switching is the main mode of speciation in this subgenus

    Macroevolutionary Patterns in the Aphidini Aphids (Hemiptera: Aphididae): Diversification, Host Association, and Biogeographic Origins

    Get PDF
    , the most diverse genus in the family. We used a combined dataset of one nuclear and four mitochondrial DNA regions. A molecular dating approach, calibrated with fossil records, was used to estimate divergence times of these taxa.Most generic divergences in Aphidini occurred in the Middle Tertiary, and species-level divergences occurred between the Middle and Late Tertiary. The ancestral state of host use for Aphidini was equivocal with respect to three states: monoecy on trees, heteroecy, and monoecy on grasses. The ancestral state of Rhopalosiphina likely included both heteroecy and monoecy, whereas that of Aphidina was most likely monoecy. The divergence times of aphid lineages at the generic or subgeneric levels are close to those of their primary hosts. The species-level divergences in aphids are consistent with the diversification of the secondary hosts, as a few examples suggest. The biogeographic origin of Aphidini as a whole was equivocal, but the major lineages within Aphidina likely separated into Nearctic, Western Palearctic, and Eastern Palearctic regions.Most generic divergences in Aphidini occurred in the Middle Tertiary when primary hosts, mainly in the Rosaceae, were diverging, whereas species-level divergences were contemporaneous with diversification of the secondary hosts such as Poaceae in the Middle to Late Tertiary. Our results suggest that evolution of host alternation within Aphidini may have occurred during the Middle Tertiary (Oligocene) when the secondary hosts emerged

    Aphids acquired symbiotic genes via lateral gene transfer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aphids possess bacteriocytes, which are cells specifically differentiated to harbour the obligate mutualist <it>Buchnera aphidicola </it>(γ-Proteobacteria). <it>Buchnera </it>has lost many of the genes that appear to be essential for bacterial life. From the bacteriocyte of the pea aphid <it>Acyrthosiphon pisum</it>, we previously identified two clusters of expressed sequence tags that display similarity only to bacterial genes. Southern blot analysis demonstrated that they are encoded in the aphid genome. In this study, in order to assess the possibility of lateral gene transfer, we determined the full-length sequences of these transcripts, and performed detailed structural and phylogenetic analyses. We further examined their expression levels in the bacteriocyte using real-time quantitative RT-PCR.</p> <p>Results</p> <p>Sequence similarity searches demonstrated that these fully sequenced transcripts are significantly similar to the bacterial genes <it>ldcA </it>(product, LD-carboxypeptidase) and <it>rlpA </it>(product, rare lipoprotein A), respectively. <it>Buchnera </it>lacks these genes, whereas many other bacteria, including <it>Escherichia coli</it>, a close relative of <it>Buchnera</it>, possess both <it>ldcA </it>and <it>rlpA</it>. Molecular phylogenetic analysis clearly demonstrated that the aphid <it>ldcA </it>was derived from a rickettsial bacterium closely related to the extant <it>Wolbachia </it>spp. (α-Proteobacteria, Rickettsiales), which are intracellular symbionts of various lineages of arthropods. The evolutionary origin of <it>rlpA </it>was not fully resolved, but it was clearly demonstrated that its double-ψ β-barrel domain is of bacterial origin. Real-time quantitative RT-PCR demonstrated that <it>ldcA </it>and <it>rlpA </it>are expressed 11.6 and 154-fold higher in the bacteriocyte than in the whole body, respectively. LdcA is an enzyme required for recycling murein (peptidoglycan), which is a component of the bacterial cell wall. As <it>Buchnera </it>possesses a cell wall composed of murein but lacks <it>ldcA</it>, a high level of expression of the aphid <it>ldcA </it>in the bacteriocyte may be essential to maintain <it>Buchnera</it>. Although the function of RlpA is not well known, conspicuous up-regulation of the aphid <it>rlpA </it>in the bacteriocyte implies that this gene is also essential for <it>Buchnera</it>.</p> <p>Conclusion</p> <p>In this study, we obtained several lines of evidence indicating that aphids acquired genes from bacteria via lateral gene transfer and that these genes are used to maintain the obligately mutualistic bacterium, <it>Buchnera</it>.</p

    Detection and Characterization of Wolbachia Infections in Natural Populations of Aphids: Is the Hidden Diversity Fully Unraveled?

    Get PDF
    Aphids are a serious threat to agriculture, despite being a rather small group of insects. The about 4,000 species worldwide engage in highly interesting and complex relationships with their microbial fauna. One of the key symbionts in arthropods is Wolbachia, an α-Proteobacterium implicated in many important biological processes and believed to be a potential tool for biological control. Aphids were thought not to harbour Wolbachia; however, current data suggest that its presence in aphids has been missed, probably due to the low titre of the infection and/or to the high divergence of the Wolbachia strains of aphids. The goal of the present study is to map the Wolbachia infection status of natural aphids populations, along with the characterization of the detected Wolbachia strains. Out of 425 samples from Spain, Portugal, Greece, Israel and Iran, 37 were found to be infected. Our results, based mainly on 16S rRNA gene sequencing, indicate the presence of two new Wolbachia supergroups prevailing in aphids, along with some strains belonging either to supergroup B or to supergroup A

    Changes to the Fossil Record of Insects through Fifteen Years of Discovery

    Get PDF
    The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well

    A FOSSIL APHID (HEMIPTERA : STERNORRHYNCHA) IN DOMINICAN AMBER

    No full text
    Volume: 101Start Page: 816End Page: 82
    • …
    corecore