209 research outputs found

    Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart.

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.BACKGROUND: Both the hydrogen sulfide/cystathionine-Îł-lyase (H2S/CSE) and oxytocin/oxytocin receptor (OT/OTR) systems have been reported to be cardioprotective. H2S can stimulate OT release, thereby affecting blood volume and pressure regulation. Systemic hyper-inflammation after blunt chest trauma is enhanced in cigarette smoke (CS)-exposed CSE-/- mice compared to wildtype (WT). CS increases myometrial OTR expression, but to this point, no data are available on the effects CS exposure on the cardiac OT/OTR system. Since a contusion of the thorax (Txt) can cause myocardial injury, the aim of this post hoc study was to investigate the effects of CSE-/- and exogenous administration of GYY4137 (a slow release H2S releasing compound) on OTR expression in the heart, after acute on chronic disease, of CS exposed mice undergoing Txt. METHODS: This study is a post hoc analysis of material obtained in wild type (WT) homozygous CSE-/- mice after 2-3 weeks of CS exposure and subsequent anesthesia, blast wave-induced TxT, and surgical instrumentation for mechanical ventilation (MV) and hemodynamic monitoring. CSE-/- animals received a 50 ÎĽg/g GYY4137-bolus after TxT. After 4h of MV, animals were exsanguinated and organs were harvested. The heart was cut transversally, formalin-fixed, and paraffin-embedded. Immunohistochemistry for OTR, arginine-vasopressin-receptor (AVPR), and vascular endothelial growth factor (VEGF) was performed with naĂŻve animals as native controls. RESULTS: CSE-/- was associated with hypertension and lower blood glucose levels, partially and significantly restored by GYY4137 treatment, respectively. Myocardial OTR expression was reduced upon injury, and this was aggravated in CSE-/-. Exogenous H2S administration restored myocardial protein expression to WT levels. CONCLUSIONS: This study suggests that cardiac CSE regulates cardiac OTR expression, and this effect might play a role in the regulation of cardiovascular function.German Research FoundationIGradUUlm University (Herta-Narthorff-Programm

    Metabolic, cardiac and renal effects of the slow hydrogen sulfide-releasing molecule GYY4137 during resuscitated septic shock in swine with pre-existing coronary artery disease

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Published Ahead of Print, 19 January 2017Decreased levels of endogenous hydrogen sulfide (H2S) contribute to atherosclerosis, whereas equivocal data are available on H2S effects during sepsis. Moreover, H2S improved glucose utilization in anaesthetized, ventilated, hypothermic mice, but normothermia and/or sepsis blunted this effect. The metabolic effects of H2S in large animals are controversial. Therefore, we investigated the effects of the H2S donor GYY4137 during resuscitated, fecal peritonitis-induced septic shock in swine with genetically and diet-induced coronary artery disease (CAD). 12 and 18 hours after peritonitis induction, pigs received either GYY4137 (10 mg kg, n = 9) or vehicle (n = 8). Before, at 12 and 24 hours of sepsis, we assessed left ventricular (pressure-conductance catheters) and renal (creatinine clearance, blood NGAL levels) function. Endogenous glucose production and glucose oxidation were derived from the plasma glucose isotope and the expiratory CO2/CO2 enrichment during continuous i.v. 1,2,3,4,5,6-C6-glucose infusion. GYY4137 significantly increased aerobic glucose oxidation, which coincided with higher requirements of exogenous glucose to maintain normoglycemia, as well as significantly lower arterial pH and decreased base excess. Apart from significantly lower cardiac eNOS expression and higher troponin levels, GYY4137 did not significantly influence cardiac and kidney function or the systemic inflammatory response. During resuscitated septic shock in swine with CAD, GYY4137 shifted metabolism to preferential carbohydrate utilization. Increased troponin levels are possibly due to reduced local NO availability. Cautious dosing, the timing of GYY4137 administration and interspecies differences most likely account for the absence of any previously described anti-inflammatory or organ-protective effects of GYY4137 in this model

    Effects of pretreatment hypothermia during resuscitated porcine hemorrhagic shock

    Get PDF
    OBJECTIVES: Accidental hypothermia increases mortality and morbidity after hemorrhage, but controversial data are available on the effects of therapeutic hypothermia. Therefore, we tested the hypothesis whether moderate pretreatment hypothermia would beneficially influence organ dysfunction during long-term, porcine hemorrhage and resuscitation. DESIGN: Prospective, controlled, randomized study. SETTING: University animal research laboratory. SUBJECTS: Twenty domestic pigs of either gender. INTERVENTIONS: Using an extracorporeal heat exchanger, anesthetized and instrumented animals were maintained at 38 degrees C, 35 degrees C, or 32 degrees C core temperature and underwent 4 hours of hemorrhage (removal of 40% of the blood volume and subsequent blood removal/retransfusion to maintain mean arterial pressure at 30 mm Hg). Resuscitation comprised of hydroxyethyl starch and norepinephrine infusion titrated to maintain mean arterial pressure at preshock values. MEASUREMENTS AND MAIN RESULTS: Before, immediately at the end of, and 12 and 22 hours after hemorrhage, we measured systemic and regional hemodynamics (portal vein, hepatic and right kidney artery ultrasound flow probes) and oxygen transport, and nitric oxide and cytokine production. Hemostasis was assessed by rotation thromboelastometry. Postmortem biopsies were analyzed for histomorphology (hematoxylin and eosin staining) and markers of apoptosis (kidney Bcl-xL and caspase-3 expression). Hypothermia at 32 degrees C attenuated the shock-related lactic acidosis but caused metabolic acidosis, most likely resulting from reduced carbohydrate oxidation. Although hypothermia did not further aggravate shock-related coagulopathy, it caused a transitory attenuation of kidney and liver dysfunction, which was ultimately associated with reduced histological damage and more pronounced apoptosis. CONCLUSIONS: During long-term porcine hemorrhage and resuscitation, moderate pretreatment hypothermia was associated with a transitory attenuation of organ dysfunction and less severe histological tissue damage despite more pronounced metabolic acidosis. This effect is possibly due to a switch from necrotic to apoptotic cell death, ultimately resulting from reduced tissue energy deprivation during the shock phase

    Effects of the PPAR-β/δ agonist GW0742 during resuscitated porcine septic shock.

    Get PDF
    BACKGROUND: In un-resuscitated rodent models of septic shock, the peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ) agonist GW0742 improved visceral organ function. Therefore, we tested the hypothesis whether GW0742 would attenuate kidney injury during long-term, resuscitated, porcine polymicrobial septic shock. METHODS: Six, 12, and 18 h after the induction of fecal peritonitis by inoculation of autologous feces, anesthetized, mechanically ventilated, and instrumented male pigs with pre-existing atherosclerosis resulting from familial hypercholesteremia and atherogenic diet randomly received either vehicle (dimethyl sulfoxide, n = 12) or GW0742 (n = 10). Resuscitation comprised hydroxyethyl starch and norepinephrine infusion titrated to maintain mean arterial pressure at baseline values. RESULTS: Despite aggressive fluid resuscitation, fecal peritonitis was associated with arterial hypotension requiring norepinephrine infusion, ultimately resulting in progressive lactic acidosis and acute kidney injury. GW0742 did not beneficially affect any parameter of systemic and regional hemodynamics, gas exchange, metabolism, or organ function. The parameters of inflammation, oxidative and nitrosative stress, and organ injury (post-mortem analysis for histomorphology and markers of apoptosis) were not influenced either. Immunohistochemistry of pre-shock kidney biopsies from a previous study in this swine strain showed markedly lower PPAR-β/δ receptor expression than in healthy animals. CONCLUSIONS: In swine with pre-existing atherosclerosis, the PPAR-β/δ agonist GW0742 failed to attenuate septic shock-induced circulatory failure and kidney dysfunction, most likely due to reduced receptor expression coinciding with cardiovascular and metabolic co-morbidity

    Cardiac Effects of Hyperoxia During Resuscitation from Hemorrhagic Shock in Swine

    Get PDF
    Hyperoxia (ventilation with FIO2 = 1.0) has vasoconstrictor properties, in particular in the coronary vascular bed, and, hence, may promote cardiac dysfunction. However, we previously showed that hyperoxia attenuated myocardial injury during resuscitation from hemorrhage in swine with coronary artery disease. Therefore, we tested the hypothesis whether hyperoxia would also mitigate myocardial injury and improve heart function in the absence of chronic cardiovascular co-morbidity.After 3 hours of hemorrhage (removal of 30% of the calculated blood volume and subsequent titration of mean arterial pressure to 40mmHg) 19 anesthetized, mechanically ventilated and instrumented pigs received FIO2 = 0.3(control) or hyperoxia(FIO2 = 1.0) during the first 24 hours. Before, at the end of and every 12 hours after shock, hemodynamics, blood gases, metabolism, cytokines and cardiac function (pulmonary artery thermodilution, left ventricular pressure-conductance catheterization) were recorded. At 48 hours, cardiac tissue was harvested for western blotting, immunohistochemistry and mitochondrial respiration.Except for higher left ventricular end-diastolic pressures at 24 hours (hyperoxia 21(17;24),control 17(15;18)mmHg;p = 0.046), hyperoxia affected neither left ventricular function cardiac injury (max. Troponin I at 12 hours: hyperoxia:9(6;23),control:17(11;24)ng mL;p = 0.395), nor plasma cytokines (except for interleukin-1β: hyperoxia 10(10;10) and 10(10;10)/control 14(10;22), 12(10;15)pg mL, p = 0.023 and 0.021 at 12 and 24 hours, respectively), oxidation and nitrosative stress, and mitochondrial respiration. However, hyperoxia decreased cardiac tissue 3-nitrotyrosine formation (p < 0.001) and inducible nitric oxide synthase expression (p = 0.016). Ultimately, survival did not differ significantly either.In conclusion, in contrast to our previous study in swine with coronary artery disease, hyperoxia did not beneficially affect cardiac function or tissue injury in healthy swine, but was devoid of deleterious side effects

    The Energy Application Domain Extension for CityGML: enhancing interoperability for urban energy simulations

    Get PDF
    The road towards achievement of the climate protection goals requires, among the rest, a thorough rethinking of the energy planning tools (and policies) at all levels, from local to global. Nevertheless, it is in the cities where the largest part of energy is produced and consumed, and therefore it makes sense to focus the attention particularly on the cities as they yield great potentials in terms of energy consumption reduction and efficiency increase. As a direct consequence, a comprehensive knowledge of the demand and supply of energy resources, including their spatial distribution within urban areas, is therefore of utmost importance. Precise, integrated knowledge about 3D urban space, i.e. all urban (above and underground) features, infrastructures, their functional and semantic characteristics, and their mutual dependencies and interrelations play a relevant role for advanced simulation and analyses. As a matter of fact, what in the last years has proven to be an emerging and effective approach is the adoption of standard-based, integrated semantic 3D virtual city models, which represent an information hub for most of the abovementioned needs. In particular, being based on open standards (e.g. on the CityGML standard by the Open Geospatial Consortium), virtual city models firstly reduce the effort in terms of data preparation and provision. Secondly, they offer clear data structures, ontologies and semantics to facilitate data exchange between different domains and applications. However, a standardised and omni-comprehensive urban data model covering also the energy domain is still missing at the time of writing (January 2018). Even CityGML falls partially short when it comes to the definition of specific entities and attributes for energy-related applications. Nevertheless, and starting from the current version of CityGML (i.e. 2.0), this article describes the conception and the definition of an Energy Application Domain Extension (ADE) for CityGML. The Energy ADE is meant to offer a unique and standard-based data model to fill, on one hand, the above-mentioned gap, and, on the other hand, to allow for both detailed single-building energy simulation (based on sophisticated models for building physics and occupant behaviour) and city-wide, bottom-up energy assessments, with particular focus on the buildings sector. The overall goal is to tackle the existing data interoperability issues when dealing with energy-related applications at urban scale. The article presents the rationale behind the Energy ADE, it describes its main characteristics, the relation to other standards, and provides some examples of current applications and case studies already adopting it

    Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions

    Get PDF
    Background: Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives: To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods: Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results: The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions: Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices
    • …
    corecore