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Abstract

Background: Both the hydrogen sulfide/cystathionine-γ-lyase (H2S/CSE) and oxytocin/
oxytocin receptor (OT/OTR) systems have been reported to be cardioprotective. H2S
can stimulate OT release, thereby affecting blood volume and pressure regulation.
Systemic hyper-inflammation after blunt chest trauma is enhanced in cigarette smoke
(CS)-exposed CSE−/− mice compared to wildtype (WT). CS increases myometrial OTR
expression, but to this point, no data are available on the effects CS exposure on the
cardiac OT/OTR system. Since a contusion of the thorax (Txt) can cause myocardial
injury, the aim of this post hoc study was to investigate the effects of CSE−/− and
exogenous administration of GYY4137 (a slow release H2S releasing compound) on
OTR expression in the heart, after acute on chronic disease, of CS exposed mice
undergoing Txt.

Methods: This study is a post hoc analysis of material obtained in wild type (WT)
homozygous CSE−/− mice after 2-3 weeks of CS exposure and subsequent anesthesia,
blast wave-induced TxT, and surgical instrumentation for mechanical ventilation (MV)
and hemodynamic monitoring. CSE−/− animals received a 50 μg/g GYY4137-bolus after
TxT. After 4h of MV, animals were exsanguinated and organs were harvested. The heart
was cut transversally, formalin-fixed, and paraffin-embedded. Immunohistochemistry for
OTR, arginine-vasopressin-receptor (AVPR), and vascular endothelial growth factor
(VEGF) was performed with naïve animals as native controls.

Results: CSE−/− was associated with hypertension and lower blood glucose levels,
partially and significantly restored by GYY4137 treatment, respectively. Myocardial OTR
expression was reduced upon injury, and this was aggravated in CSE−/−. Exogenous H2S
administration restored myocardial protein expression to WT levels.

Conclusions: This study suggests that cardiac CSE regulates cardiac OTR expression,
and this effect might play a role in the regulation of cardiovascular function.

Keywords: Cystathionine-γ-lyase, GYY4137, Arginine-vasopressin receptor, Vascular
endothelial growth factor, Blood glucose, Cardiovascular system
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Background
Hydrogen sulfide (H2S) is an important regulator of the cardiovascular system and has

been shown to be protective in myocardial ischemia-reperfusion injury (I/R) [1–3] and

heart failure [4]. In the central nervous system, H2S has recently been implicated in the

release of both oxytocin (OT) and arginine-vasopressin (AVP), thereby affecting blood

volume regulation [5].

In mice, the genetic deletion of cystathionine-γ-lyase (CSE; CSE−/−) leads to hyper-

tension [6, 7], and OT knock-out mice (OT−/−) are characterized by lower baseline but

higher stress-induced blood pressure than wildtype (WT) animals [8]. The heart is

known to express CSE [9, 10], and both OT as well as the OT receptor (OTR) [11].

The oxytocin system has protective effects in myocardial I/R injury [12–15], and its

downregulation is implicated in dilated cardiomyopathy [16], and hypertension [17],

suggesting that reduced levels of OTR may aggravate these pathologies [18].

Pre-traumatic cigarette smoke (CS) exposure has been reported to aggravate

organ dysfunction after trauma and hemorrhage [19]. However, equivocal data

regarding the regulation of CSE in CS-exposed rodents are available: both its up-

and downregulation have been reported [20–23]. Furthermore, detrimental effects

of CSE inhibition as well as a benefit from the exogenous administration of H2S

have been shown [22–24]. Finally, in a model of acute on chronic disease, we

recently showed that post-traumatic systemic hyper-inflammation and acute lung

injury (ALI) were aggravated in CSE−/− with pre-traumatic CS exposure when com-

pared to wildtype (WT) littermates [7].

Scarce data are only available on the role of the OT system during acute and/or

chronic alterations of gas exchange: OT signaling is protective in fetal hypoxemia

[25] and hypercapnia-induced tachycardia and hypertension [26], and CS exposure

increases myometrial OTR expression [27, 28]. However, no data are available on

any of these effects on the cardiac OT/OTR system. Txt not only causes ALI but

is also frequently associated with myocardial injury [29, 30]. Therefore, we chose

to investigate OTR expression in heart tissue from the most severely affected

groups from the aforementioned previous study [7] that included a modulation of

the H2S system.

Methods
This is a post hoc study of material available from previous experiments [7] that

were performed in adherence to the National Institutes of Health Guidelines on

the Use of Laboratory Animals and the European Union “Directive 2010/63 EU on

the protection of animals used for scientific purposes.” and authorized by the fe-

deral authorities for animal research of the Regierungspräsidium Tübingen (ap-

proved animal experimentation number: 1130), Baden-Württemberg, Germany, and

the Animal Care Committee of the University of Ulm, Baden-Württemberg,

Germany. The experiments were conducted on C57BL/6J mice that were received

from Charles River laboratories Germany (Sulzbach, Germany) and homozygous

(CSE−/−) mutant mice (C57BL/6J.129SvEv) bred in-house [6]. Animals were kept

under standardized conditions and were equally distributed in terms of age, body

weight, and sex (10–25 weeks, 26 +/− 3 g, male and female). Native animals were

anesthetized with sevoflurane (2.5%; Sevorane, Abbott, Wiesbaden, HE, Germany)
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and buprenorphine (1.5 mg/g; Temgesic, Reckitt Benckiser, Slough, UK), mid-line

laparotomy was performed, and animals were sacrificed via venous exsanguination.

Hearts were harvested and fixed in formalin for further analysis.

Cigarette smoke inhalation procedure

All animals underwent CS exposure for 5 days per week over a period of 3 to 4 weeks

using a standardized protocol, as described previously [31]. Prior to the blast wave pro-

cedure, mice were allowed to recover for 1 week to avoid acute stress effects induced

by the CS procedure per se.

General anesthesia, blast wave, and surgery

All animals received a Txt and were grouped according to wild type (WT) and CSE−/−

with CS exposure. Prior to chest trauma WT and knock-out mice (n = 8 per group)

were anesthetized with sevoflurane (2.5%; Sevorane, Abbott, Wiesbaden, HE, Germany)

and buprenorphine (1.5 mg/g; Temgesic, Reckitt Benckiser, Slough, UK), as described

previously [31]. Blunt chest trauma was induced by a single blast wave positioned on

the middle of the thorax, as described previously [32]. Briefly, a Mylar polyester film

(Du Pont de Nemur, Bad Homburg, Germany) was rapidly ruptured by compressed air,

thereby releasing a single blast wave to the murine mid-sternal chest to reproducibly

induce a lung contusion without serious organ damage. Immediately afterwards, CSE−/

− mice received an administration of GYY4137 or an equivalent volume of saline as a

single intravenous injection of 50 μg/g [33, 34], and all mice received ketamine

(120 mg/g; Ketanest-S, Pfizer, New York City, NY), midazolam (1.25 mg/g;

Midazolam-ratiopharm, Ratiopharm, Ulm, BW, Germany), and fentanyl (0.25 mg/g;

Fentanyl-hameln, Hameln Pharma Plus GmbH, Hameln, NI, Germany), and were placed

on a procedure bench incorporating a closed-loop-system for body temperature control [7,

32, 35]. Lung-protective mechanical ventilation using a small animal ventilator (FlexiVent,

Scireq, MO, Canada) was performed via a tracheostomy, as described previously [7, 31,

35]. Surgical instrumentation comprised catheters in the jugular vein, the carotid artery,

and the bladder [31]. General anesthesia was titrated to guarantee complete tolerance

against noxious stimuli and was sustained by continuous intravenous administration of

ketamine, midazolam, and fentanyl to reach deep sedation, fluid resuscitation comprised

hydroxyethyl starch 6% (Tetraspan, Braun Medical, Melsungen, HE, Germany) [31]. At the

end of the experiment, the animals were exsanguinated and organs were harvested. The

heart was cut transversally and was fixed in formalin for immunohistochemistry (IHC).

Hemodynamic and metabolic parameters were recorded hourly, blood gas tensions,

acid-base status, glycemia, and lactatemia were assessed at the end of the 4 h period of

mechanical ventilation [31]. The clinical data provided for the experimental groups are

obtained from the mouse ICU, which requires surgical instrumentation and thus can-

not be provided for the native animals.

Immunohistochemistry

IHC was performed as described previously [32, 36, 37]. After formalin fixation, hearts

were dehydrated, embedded in paraffin, and 3 μm sections were cut. Slides were depar-

affinized and rehydrated, followed by heat-induced antigen retrieval by microwaving in
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10 mM citrate (pH 6). After blocking with 10% goat serum (20 min), OTR, Arginine

Vasopressin Receptor 1A (AVPR), and vascular endothelial growth factor (VEGF)

expression were analyzed with the following primary antibodies: anti-OTR (rabbit

polyclonal, Proteintech, Manchester, UK 1:50), anti-AVPR (rabbit polyclonal, Abcam,

Cambridge, UK 1:200), and anti-VEGF (rabbit polyclonal, Abcam, Cambridge, UK

1:200) in diluent (TBS pH = 8, 0.3% Tween 20, 0.1% goat serum). Slide sections con-

taining native and experimental tissue were analyzed concurrently, as well as positive

and negative controls. AVPR was analyzed because it shares a 57% homology to OTR

and thus, OT can work through AVPR as well [38]. The expression of vascular endo-

thelial growth factor (VEGF) was determined as a mediator of cardiac function [39, 40]

and H2S is reported to be cardioprotective via a VEGF-dependent pathway [4]. Primary

antibodies were detected by a secondary anti-rabbit IgG antibody conjugated to

Alkaline Phosphatase; Jackson, ImmunoResearch, West Grove, Pa, USA) and visualized

with a red chromogen (Dako REAL Detection System Chromogen Red, Agilent Santa

Clara, CA, USA). Counterstaining was performed with Mayers hematoxylin (Sigma,

Taufkirchen, Germany). Slides were analyzed using the Zeiss Axio Imager A1 micro-

scope (Zeiss, Jena, TH, Germany). Two distinct 800,000 μm2 regions were quantified

for intensity of signal by using the Axio Vision 4.8 software. Results are presented as

densitometric sum red [31, 32, 36].

Statistical analysis

Unless stated otherwise, all data are presented as median (quartiles). After exclusion of

normal distribution using the Kolmogorov–Smirnov test, intergroup differences were

analyzed using the Kruskal–Wallis ANOVA on ranks and, if appropriate, subsequently

the Dunn post hoc test for two-tailed multiple comparisons. The significance level was

set to P < 0.05. Quantitative graphical presentations and statistical analyses were done

with GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA, USA).

Results
Physiological data

All injured animals used in this study underwent pre-traumatic CS exposure and Txt.

Physiological data are shown in Table 1. CSE−/− mice showed higher heart rates than

the WT mice, and GYY4137 did not affect this parameter. CSE−/− mice also had

Table 1 Physiological data of injured animals (CS exposure + Txt)

WT CSE−/− CSE−/− GYY4137 p value

Heart rate (beats/min) 330 (316; 356) 402 (390; 410)a 395 (363; 438)a 0.0140

Mean arterial pressure (mmHg) 57 (55; 59) 84 (74; 89)a 75 (63; 88) 0.0044

Glucose (mg/dl) 92 (86; 107) 76 (72; 82)a 95 (90; 104) b 0.0186

Lactate (mmol/l) 1.1 (1.0; 1.5) 0.7 (0.6; 0.8)a 0.9 (0.8; 1.1) 0.0035

Arterial base excess (mmol/l) − 10.2 (− 11.0; − 8.5) −5.7 (− 7.0; − 4.9)a − 6.9 (− 9.4; − 5.0) 0.0107

Arterial pH 7.25 (7.25; 7.28) 7.37 (7.33; 7.41)a 7.35 (7.29; 7.37) 0.0059

Urine (g) 0.6 (0.4; 0.9) 1.9 (1.7; 2.6)a 1.3 (1.2; 1.7) 0.0037

Data given as median (interquartile range)
aSignificant to wt
bSignificant to CSE−/−
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significantly higher MAP than the WT animals, and GYY4137 fell in between the two

other groups. CSE−/− mice had lower circulating glucose levels than wildtypes;

GYY4137 administration restored circulating glucose to normal levels. Further, CSE−/−

mice had reduced lactate levels, less negative base excess and higher pH in comparison

to WT, GYY4137 did not have any statistically significant effects on these parameters.

Protein expression in the heart

Oxytocin receptor (OTR) expression in the heart (see Fig. 1a, b) was constitutive in na-

tive animals and could be detected in cardiomyocytes (open arrow) as well as the

A B

C D

E F

Fig. 1 Immunohistochemistry. Exemplary pictures (top left native, top right WT CS Txt, bottom left CSE−/− CS
Txt, bottom right CSE−/− CS Txt GYY4137, respectively) of left-ventricular myocardium (ventricular lumen to the
right) and densitometric analysis for OTR expression (a, b), AVPR expression (c, d), and VEGF expression (e, f).
Data given as box plots (median, interquartile range, minimum and maximum). Boxplots represent N = 4
(native) and N = 8 (experimental groups). Open arrow cardiomyocyte, bold arrow cardiac microvasculature
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cardiac microvasculature (bold arrow, Fig. 1a). CS + Txt significantly reduced cardiac

OTR expression, and this effect was further enhanced in the CSE−/− animals. Exogen-

ous administration of GYY4137 restored OTR expression so that receptor protein

levels did not significantly differ from native animals. Cardiac AVPR expression

was also significantly reduced in injured animals, though the effect of CSE deletion

was less pronounced GYY4137 administration did not modify this response (see

Fig. 1c, d). VEGF expression was reduced upon injury, most pronounced in CSE−/−

animals but then restored to WT levels upon GYY4137 treatment (see Fig. 1e, f ).

Discussion
This study was to test the hypothesis if there is a relationship between the H2S

and the OTR system in the mouse heart in the combined setting of “acute on

chronic disease.” The main findings were that Txt after pre-traumatic CS exposure

caused (i) a significant downregulation of the cardiac OTR which was (ii) even

more pronounced in mice with a genetic CSE deletion of, and that (iii) the admin-

istration of the slow H2S-releasing compound GYY4137 reversed the effects of CSE

deletion.

CSE−/− mice were characterized by higher MAP (75–90 mmHg), which is in accordance

with the literature: a genetic CSE deletion leads to hypertension [6], although this effect ap-

pears to be context-dependent (anesthesia, handling of the animals etc.) [41]. In C57/BL6

mice undergoing continuous i.v. anesthesia MAP is approx. 60 mmHg [42], which is com-

parable to the values WTanimals in this study. Administration of GYY4137 slightly reduced

MAP, preserved or restored the OTR, VEGF, and AVPR in the heart, suggesting cardiopro-

tection as has been reported in myocardial I/R [43–46] and chronic heart failure [47].

Both H2S and OT have been implicated in the regulation of energy homeostasis: H2S

enhances glucose-generating and suppresses glucose-consuming processes leading to

increased glucose availability [37]. OT/OTR knock-out mice develop obesity [48], and

chronic OT administration led to weight loss in obese monkeys [49]. We and others

have shown that hyperglycemia leads to downregulation of CSE expression and reduc-

tion of H2S formation [37, 50–52]. These results agree with a similar finding for the

OT/OTR system: reduced OT levels were reported during hyperglycemia [18, 53].

Equivocal data, however, have been reported on the relationship between H2S and

the OT system: both the H2S liberating salt Na2S and the slow-releasing compound

GYY4137 inhibited OT effects; however, all the data were obtained in myometrial

samples [54–56]. Moreover, You et al. showed an inverse correlation of CSE and OTR

expression [57]. In contrast, intracerebroventricular Na2S injection not only reduced

water intake and stimulated OT release, but also increased plasma levels of AVP and

OT [5, 58]. Our findings support these latter results: not only did we observe a more

pronounced loss of OTR expression in absence of CSE, but the OTR was restored to

native levels through GYY4137 administration.

Due to structural analogy of OT and arginine vasopressin (AVP), the peptides might

bind to each other’s receptor [38], and, consequently, we also investigated the AVPR

expression. Our results suggest that cardiac AVPR is not as impacted by H2S adminis-

tration as the OTR.

H2S has been reported to work through a VEGF-dependent pathway [4] that mediates car-

dioprotection [39, 40]. VEGF, in the GYY4137 group, as previously mentioned, was restored
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to WT levels. This suggests a link for the interaction of the H2S pathway and the OT/OTR

system, in that OTalso has been reported to signal through the activation of VEGF [59–61].

Conclusions
In this preliminary study, performed on post hoc material, we investigated the relationship

between CSE, OTR, and H2S in the mouse heart after CS exposure and Txt. Genetic CSE

deletion led to a pronounced loss of OTR protein expression concomitant with reduced

VEGF and AVPR expression. Although the exact mechanisms must be further

investigated, our study suggests that cardiac CSE and OTR may interact in cardio-

vascular (dys)function [10, 18, 37, 49].
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