42 research outputs found
Scaling properties of step bunches induced by sublimation and related mechanisms: A unified perspective
This work provides a ground for a quantitative interpretation of experiments
on step bunching during sublimation of crystals with a pronounced
Ehrlich-Schwoebel (ES) barrier in the regime of weak desorption. A strong step
bunching instability takes place when the kinetic length is larger than the
average distance between the steps on the vicinal surface. In the opposite
limit the instability is weak and step bunching can occur only when the
magnitude of step-step repulsion is small. The central result are power law
relations of the between the width, the height, and the minimum interstep
distance of a bunch. These relations are obtained from a continuum evolution
equation for the surface profile, which is derived from the discrete step
dynamical equations for. The analysis of the continuum equation reveals the
existence of two types of stationary bunch profiles with different scaling
properties. Through a mathematical equivalence on the level of the discrete
step equations as well as on the continuum level, our results carry over to the
problems of step bunching induced by growth with a strong inverse ES effect,
and by electromigration in the attachment/detachment limited regime. Thus our
work provides support for the existence of universality classes of step
bunching instabilities [A. Pimpinelli et al., Phys. Rev. Lett. 88, 206103
(2002)], but some aspects of the universality scenario need to be revised.Comment: 21 pages, 8 figure
Monitoring and Scoring Counter-Diffusion Protein Crystallization Experiments in Capillaries by in situ Dynamic Light Scattering
In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm) in order to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of the progression of the crystallization front and with a simulation model of counter-diffusion in 1D
Pan-Eurasian Experiment (PEEX): Towards a holistic understanding of the feedbacks and interactions in the land-Atmosphere-ocean-society continuum in the northern Eurasian region
The northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The Arctic-boreal natural environments play a crucial role in the global climate via albedo change, carbon sources and sinks as well as atmospheric aerosol production from biogenic volatile organic compounds. Furthermore, it is expected that global trade activities, demographic movement, and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but also is able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX sets a research approach by which large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land-Atmosphere-Aquatic-society continuum in the northern Eurasian region. We introduce here the state of the art for the key topics in the PEEX research agenda and present the future prospects of the research, which we see relevant in this context
Diffusion-limited kinetics of the solution–solid phase transition of molecular substances
For critical tests of whether diffusion-limited kinetics is an option for the solution–solid phase transition of molecular substances or whether they are determined exclusively by a transition state, we performed crystallization experiments with ferritin and apoferritin, a unique pair of proteins with identical shells but different molecular masses. We find that the kinetic coefficient for crystallization is identical (accuracy ≤7%) for the pair, indicating diffusion-limited kinetics of crystallization. Data on the kinetics of this phase transition in systems ranging from small-molecule ionic to protein and viri suggest that the kinetics of solution-phase transitions for broad classes of small-molecule and protein materials are diffusion-limited