150 research outputs found

    Lung cancer in HIV patients and their parents: A Danish cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV patients are known to be at increased risk of lung cancer but the risk factors behind this are unclear.</p> <p>Methods</p> <p>We estimated the cumulative incidence and relative risk of lung cancer in 1) a population of all Danish HIV patients identified from the Danish HIV Cohort Study (n = 5,053) and a cohort of population controls matched on age and gender (n = 50,530) (study period; 1995 - 2009) and 2) their parents (study period; 1969 - 2009). Mortality and relative risk of death after a diagnosis of lung cancer was estimated in both populations.</p> <p>Results</p> <p>29 (0.6%) HIV patients vs. 183 (0.4%) population controls were diagnosed with lung cancer in the observation period. HIV patients had an increased risk of lung cancer (adjusted incidence rate ratio (IRR); 2.38 (95% CI; 1.61 - 3.53)). The IRR was considerably increased in HIV patients who were smokers or former smokers (adjusted IRR; 4.06 (95% CI; 2.66 - 6.21)), male HIV patients with heterosexual route of infection (adjusted IRR; 4.19 (2.20 - 7.96)) and HIV patients with immunosuppression (adjusted IRR; 3.25 (2.01 - 5.24)). Both fathers and mothers of HIV patients had an increased risk of lung cancer (adjusted IRR for fathers; 1.31 (95% CI: 1.09 - 1.58), adjusted IRR for mothers 1.35 (95% CI: 1.07 - 1.70)). Mortality after lung cancer diagnose was increased in HIV patients (adjusted mortality rate ratio 2.33 (95%CI; 1.51 - 3.61), but not in the parents. All HIV patients diagnosed with lung cancer were smokers or former smokers.</p> <p>Conclusion</p> <p>The risk was especially increased in HIV patients who were smokers or former smokers, heterosexually infected men or immunosuppressed. HIV appears to be a marker of behavioural or family related risk factors that affect the incidence of lung cancer in HIV patients.</p

    Long-term mortality in HIV patients virally suppressed for more than three years with incomplete CD4 recovery: A cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mortality in patients with persistent low CD4 count despite several years of HAART with sustained viral suppression is poorly documented. We aimed to identify predictors for inadequate CD4 cell recovery and estimate mortality in patients with low CD4 count but otherwise successful HAART.</p> <p>Method</p> <p>In a nationwide cohort of HIV patients we identified all individuals who started HAART before 1 January 2005 with CD4 cell count ≤ 200 cells/μL and experienced three years with sustained viral suppression. Patients were categorized according to CD4 cell count after the three years suppressed period (≤ 200 cells/μL; immunological non-responders (INRs), >200 cells/μL; immunological responders (IRs)). We used logistic regression and Kaplan-Meier analysis to estimated risk factors and mortality for INRs compared to IRs.</p> <p>Results</p> <p>We identified 55 INRs and 236 IRs. In adjusted analysis age > 40 years and > one year from first CD4 cell count ≤ 200 cells/μL to start of the virologically suppressed period were associated with increased risk of INR. INRs had substantially higher mortality compared to IRs. The excess mortality was mainly seen in the INR group with > one year of immunological suppression prior to viral suppression and injection drug users (IDUs).</p> <p>Conclusion</p> <p>Age and prolonged periods of immune deficiency prior to successful HAART are risk factors for incomplete CD4 cell recovery. INRs have substantially increased long-term mortality mainly associated with prolonged immunological suppression prior to viral suppression and IDU.</p

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    Hepatitis delta infection among persons living with HIV in Europe

    Get PDF
    BACKGROUND AND AIMS: A high prevalence of hepatitis delta virus (HDV) infection, the most severe form of viral hepatitis, has been reported among persons living with HIV (PLWH) in Europe. We analysed data from a large HIV cohort collaboration to characterize HDV epidemiological trends across Europe, as well as its impact on clinical outcomes. METHODS: All PLWH with a positive hepatitis B surface antigen (HBsAg) in the Swiss HIV Cohort Study and EuroSIDA between 1988 and 2019 were tested for anti-HDV antibodies and, if positive, for HDV RNA. Demographic and clinical characteristics at initiation of antiretroviral therapy were compared between HDV-positive and HDV-negative individuals using descriptive statistics. The associations between HDV infection and overall mortality, liver-related mortality as well as hepatocellular carcinoma (HCC) were assessed using cumulative incidence plots and cause-specific multivariable Cox regression. RESULTS: Of 2793 HBsAg-positive participants, 1556 (56%) had stored serum available and were included. The prevalence of HDV coinfection was 15.2% (237/1556, 95% confidence interval [CI]: 13.5%–17.1%) and 66% (132/200) of HDV-positive individuals had active HDV replication. Among persons who inject drugs (PWID), the prevalence of HDV coinfection was 50.5% (182/360, 95% CI: 45.3%–55.7%), with similar estimates across Europe, compared to 4.7% (52/1109, 95% CI: 3.5%–5.9%) among other participants. During a median follow-up of 10.8 years (interquartile range 5.6–17.8), 82 (34.6%) HDV-positive and 265 (20.1%) HDV-negative individuals died. 41.5% (34/82) of deaths were liver-related in HDV-positive individuals compared to 17.7% (47/265) in HDV-negative individuals. HDV infection was associated with overall mortality (adjusted hazard ratio 1.6; 95% CI 1.2–2.1), liver-related death (2.9, 1.6–5.0) and HCC (6.3, 2.5–16.0). CONCLUSION: We found a very high prevalence of hepatitis delta among PWID across Europe. Among PLWH who do not inject drugs, the prevalence was similar to that reported from populations without HIV. HDV coinfection was associated with liver-related mortality and HCC incidence

    APOBEC3G-Induced Hypermutation of Human Immunodeficiency Virus Type-1 Is Typically a Discrete “All or Nothing” Phenomenon

    Get PDF
    The rapid evolution of Human Immunodeficiency Virus (HIV-1) allows studies of ongoing host–pathogen interactions. One key selective host factor is APOBEC3G (hA3G) that can cause extensive and inactivating Guanosine-to-Adenosine (G-to-A) mutation on HIV plus-strand DNA (termed hypermutation). HIV can inhibit this innate anti-viral defense through binding of the viral protein Vif to hA3G, but binding efficiency varies and hypermutation frequencies fluctuate in patients. A pivotal question is whether hA3G-induced G-to-A mutation is always lethal to the virus or if it may occur at sub-lethal frequencies that could increase viral diversification. We show in vitro that limiting-levels of hA3G-activity (i.e. when only a single hA3G-unit is likely to act on HIV) produce hypermutation frequencies similar to those in patients and demonstrate in silico that potentially non-lethal G-to-A mutation rates are ∼10-fold lower than the lowest observed hypermutation levels in vitro and in vivo. Our results suggest that even a single incorporated hA3G-unit is likely to cause extensive and inactivating levels of HIV hypermutation and that hypermutation therefore is typically a discrete “all or nothing” phenomenon. Thus, therapeutic measures that inhibit the interaction between Vif and hA3G will likely not increase virus diversification but expand the fraction of hypermutated proviruses within the infected host

    Establishing a hepatitis C continuum of care among HIV/hepatitis C virus-coinfected individuals in EuroSIDA

    Get PDF
    Objectives The aim of the study was to establish a methodology for evaluating the hepatitis C continuum of care in HIV/hepatitis C virus (HCV)-coinfected individuals and to characterize the continuum in Europe on 1 January 2015, prior to widespread access to direct-acting antiviral (DAA) therapy. Methods Stages included in the continuum were as follows: anti-HCV antibody positive, HCV RNA tested, currently HCV RNA positive, ever HCV RNA positive, ever received HCV treatment, completed HCV treatment, follow-up HCV RNA test, and cure. Sustained virological response (SVR) could only be assessed for those with a follow-up HCV RNA test and was defined as a negative HCV RNA result measured > 12 or 24 weeks after stopping treatment. Results Numbers and percentages for the stages of the HCV continuum of care were as follows: anti-HCV positive (n = 5173), HCV RNA tested (4207 of 5173; 81.3%), currently HCV RNA positive (3179 of 5173; 61.5%), ever HCV RNA positive (n = 3876), initiated HCV treatment (1693 of 3876; 43.7%), completed HCV treatment (1598 of 3876; 41.2%), follow-up HCV RNA test to allow SVR assessment (1195 of 3876; 30.8%), and cure (629 of 3876; 16.2%). The proportion that achieved SVR was 52.6% (629 of 1195). There were significant differences between regions at each stage of the continuum (P <0.0001). Conclusions In the proposed HCV continuum of care for HIV/HCV-coinfected individuals, we found major gaps at all stages, with almost 20% of anti-HCV-positive individuals having no documented HCV RNA test and a low proportion achieving SVR, in the pre-DAA era.Peer reviewe

    Incidence of cancer and overall risk of mortality in individuals treated with raltegravir-based and non-raltegravir-based combination antiretroviral therapy regimens

    Get PDF
    Objectives: There are currently few data on the long-term risk of cancer and death in individuals taking raltegravir (RAL). The aim of this analysis was to evaluate whether there is evidence for an association. Methods: The EuroSIDA cohort was divided into three groups: those starting RAL-based combination antiretroviral therapy (cART) on or after 21 December 2007 (RAL); a historical cohort (HIST) of individuals adding a new antiretroviral (ARV) drug (not RAL) to their cART between 1 January 2005 and 20 December 2007, and a concurrent cohort (CONC) of individuals adding a new ARV drug (not RAL) to their cART on or after 21 December 2007. Baseline characteristics were compared using logistic regression. The incidences of newly diagnosed malignancies and death were compared using Poisson regression. Results: The RAL cohort included 1470 individuals [with 4058 person-years of follow-up (PYFU)] compared with 3787 (4472 PYFU) and 4467 (10 691 PYFU) in the HIST and CONC cohorts, respectively. The prevalence of non-AIDS-related malignancies prior to baseline tended to be higher in the RAL cohort vs. the HIST cohort [adjusted odds ratio (aOR) 1.31; 95% confidence interval (CI) 0.95–1.80] and vs. the CONC cohort (aOR 1.89; 95% CI 1.37–2.61). In intention-to-treat (ITT) analysis (events: RAL, 50; HIST, 45; CONC, 127), the incidence of all new malignancies was 1.11 (95% CI 0.84–1.46) per 100 PYFU in the RAL cohort vs. 1.20 (95% CI 0.90–1.61) and 0.83 (95% CI 0.70–0.99) in the HIST and CONC cohorts, respectively. After adjustment, there was no evidence for a difference in the risk of malignancies [adjusted rate ratio (RR) 0.73; 95% CI 0.47–1.14 for RALvs. HIST; RR 0.95; 95% CI 0.65–1.39 for RALvs. CONC] or mortality (adjusted RR 0.87; 95% CI 0.53–1.43 for RALvs. HIST; RR 1.14; 95% CI 0.76–1.72 for RALvs. CONC). Conclusions: We found no evidence for an oncogenic risk or poorer survival associated with using RAL compared with control groups.Peer reviewe

    Infection-related and -unrelated malignancies, HIV and the aging population

    Get PDF
    Funding Information: Conflicts of interest: JR reports personal fees from Abbvie, Bionor, BMS, Boehringer, Gilead, Merck, Janssen, Tobira, Tibotec and ViiV, outside the submitted work. OK has received honoraria, consultancy and/or lecture fees from Abbott, Gilead, GSK, Janssen, Merck, Tibotec and Viiv outside the submitted work. All other authors state no commercial or other associations that may pose a conflict of interest. Funding: Primary support for EuroSIDA is provided by the European Commission BIOMED 1 (CT94-1637), BIOMED 2 (CT97-2713), 5th Framework (QLK2-2000-00773), 6th Framework (LSHP-CT-2006-018632) and 7th Framework (FP7/2007?2013; EuroCoord n? 260694) programmes. Current support also includes unrestricted grants from Janssen R&D, Merck and Co. Inc., Pfizer Inc. and GlaxoSmithKline LLC. The participation of centres in Switzerland was supported by The Swiss National Science Foundation (Grant 108787). The authors have no financial disclosures to make. Author contributions: LS developed the project, analysed the data, and was responsible for writing the manuscript. ?HB and OK contributed to the study design and analysis, interpretation of the data and writing of the manuscript. JL proposed the project and contributed to the study design, ideas for analysis, interpretation of the data and writing of the manuscript. BL, PD, AC, JR, BK, JT and IK contributed to national coordination, study design and writing of the manuscript. AM supervised the project and contributed to the study design and analysis, interpretation of the data and writing of the manuscript. Publisher Copyright: © 2016 British HIV AssociationObjectives: HIV-positive people have increased risk of infection-related malignancies (IRMs) and infection-unrelated malignancies (IURMs). The aim of the study was to determine the impact of aging on future IRM and IURM incidence. Methods: People enrolled in EuroSIDA and followed from the latest of the first visit or 1 January 2001 until the last visit or death were included in the study. Poisson regression was used to investigate the impact of aging on the incidence of IRMs and IURMs, adjusting for demographic, clinical and laboratory confounders. Linear exponential smoothing models forecasted future incidence. Results: A total of 15 648 people contributed 95 033 person-years of follow-up, of whom 610 developed 643 malignancies [IRMs: 388 (60%); IURMs: 255 (40%)]. After adjustment, a higher IRM incidence was associated with a lower CD4 count [adjusted incidence rate ratio (aIRR) CD4 count < 200 cells/μL: 3.77; 95% confidence interval (CI) 2.59, 5.51; compared with ≥ 500 cells/μL], independent of age, while a CD4 count < 200 cells/μL was associated with IURMs in people aged < 50 years only (aIRR: 2.51; 95% CI 1.40–4.54). Smoking was associated with IURMs (aIRR: 1.75; 95% CI 1.23, 2.49) compared with never smokers in people aged ≥ 50 years only, and not with IRMs. The incidences of both IURMs and IRMs increased with older age. It was projected that the incidence of IRMs would decrease by 29% over a 5-year period from 3.1 (95% CI 1.5–5.9) per 1000 person-years in 2011, whereas the IURM incidence would increase by 44% from 4.1 (95% CI 2.2–7.2) per 1000 person-years over the same period. Conclusions: Demographic and HIV-related risk factors for IURMs (aging and smoking) and IRMs (immunodeficiency and ongoing viral replication) differ markedly and the contribution from IURMs relative to IRMs will continue to increase as a result of aging of the HIV-infected population, high smoking and lung cancer prevalence and a low prevalence of untreated HIV infection. These findings suggest the need for targeted preventive measures and evaluation of the cost−benefit of screening for IURMs in HIV-infected populations.publishersversionPeer reviewe
    corecore