438 research outputs found
Studies of the bugs within: telling sickness from cure
Gut microbiota, the bacterial communities that live inside our bodies, more and more appear to be related to our well-being. A major challenge for modern medicine, especially in regard to the role of âourâ bacterial communities, is telling apart what is a cause of a disease and what is an effect of how we treat it
Removal of Escherichia coli in treated wastewater used for food production in Morogoro, Tanzania
Acadmic Journal Vol. 10(33), pp. 1344-1350The aim of this study was to assess the removal efficiency of Escherichia coli at Mafisa and
Mzumbe domestic wastewater treatment ponds in Morogoro, Tanzania. The study was done from
October, 2013 to April, 2014. A total of 125 water samples from inlets and subsequent anaerobic,
facultative and maturation ponds as well as treated wastewater were collected and analysed for E.
coli. The estimated retention times of the wastewater treatment units were 19 and 22 days in Mafisa
and Mzumbe ponds, respectively. The concentration of E. coli ranged from 4.70 to 5.60 log cfu/mL in
untreated wastewater and was reduced to <1.00 to 2.00 log cfu/mL in the treated wastewater. During
rainy and cold seasons, the effluent discharged out at Mafisa during August 2013; and March and
April, 2014 was about 2 log cfu/mL while at Mzumbe E. coli concentration in effluent discharged out
was up to 1.23 log cfu/mL. The concentration of E. coli in untreated and treated wastewater from the
two wastewater treatment ponds study sites were comparable (P<0.05). Reduction of E. coli
concentration in wastewater treatment ponds study sites was significant with less reduction seen at
Mafisa, during rainy and cold seasons in March, April and August. To conclude, the simple
wastewater treatment ponds in the study sites were effective and demonstrated potential for
reduction of public health risks associated with use of treated wastewater in agricultural irrigation
and aquaculture
Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates
We present a soft x-ray angle-resolved photoemission spectroscopy study of
the overdoped high-temperature superconductors LaSrCuO and
LaEuSrCuO. In-plane and out-of-plane components of
the Fermi surface are mapped by varying the photoemission angle and the
incident photon energy. No dispersion is observed along the nodal
direction, whereas a significant antinodal dispersion is identified.
Based on a tight-binding parametrization, we discuss the implications for the
density of states near the van-Hove singularity. Our results suggest that the
large electronic specific heat found in overdoped LaSrCuO can
not be assigned to the van-Hove singularity alone. We therefore propose quantum
criticality induced by a collapsing pseudogap phase as a plausible explanation
for observed enhancement of electronic specific heat
Transposase-DNA complex structures reveal mechanisms for conjugative transposition of antibiotic resistance
Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes
Mechanical properties during healing of Achilles tendon ruptures to predict final outcome: A pilot Roentgen stereophotogrammetric analysis in 10 patients
<p>Abstract</p> <p>Background</p> <p>There are presently few methods described for in vivo monitoring of the mechanics of healing human tendon ruptures, and no methods for prediction of clinical outcome. We tested if Roentgen stereophotogrammetric analysis (RSA) can be used to follow the restoration of mechanical properties during healing of ruptured Achilles tendons, and if early measurements can predict clinical results.</p> <p>Methods</p> <p>Achilles tendon repair was studied with RSA in 10 patients with a total rupture. Tantalum beads were implanted in conjunction with surgical repair. The patients were evaluated at 6, 12 and 18 weeks, and after 1 year. RSA was performed with two different mechanical loadings, and the strain induced by increasing load was measured. The transverse area was determined by ultrasound. CT scan at 12 weeks confirmed that the tantalum beads were located within the tendons. Functional testing was done after 1 year. A heel raise index was chosen as primary clinical outcome variable.</p> <p>Results</p> <p>The strain was median 0.90, 0.32 and 0.14 percent per 100 N tendon force at 6 weeks, 18 weeks and one year respectively. The error of measurement was 0.04 percent units at 18 weeks. There was a large variation between patients, which appears to reflect biological variation. From 6 to 18 weeks, there was a negative correlation between increase in transverse area and increase in material properties, suggesting that healing is regulated at the organ level, to maximize stiffness. Modulus of elasticity during this time correlated with a heel raise index at one year (Rho = 0.76; p = 0.02).</p> <p>Conclusion</p> <p>We conclude that the RSA method might have potential for comparing different treatments of Achilles tendon ruptures.</p
Neutron powder diffraction study of NaMnO and LiMnO: New insights on spin-charge-orbital ordering
The high-pressure synthesized quasi-one-dimensional compounds NaMnO
and LiMnO are both antiferromagnetic insulators, and here
their atomic and magnetic structures were investigated using neutron powder
diffraction. The present crystal structural analyses of NaMn2O4 reveal that
Mn3+/Mn4+ charge-ordering state exist even at low temperature (down to 1.5 K).
It is evident from one of the Mn sites shows a strongly distorted Mn3+
octahedra due to the Jahn-Teller effect. Above TN = 39 K, a two-dimensional
short-range correlation is observed, as indicated by an asymmetric diffuse
scattering. Below TN, two antiferromagnetic transitions are observed (i) a
commensurate long-range Mn3+ spin ordering below 39 K, and (ii) an
incommensurate Mn4+ spin ordering below 10 K. The commensurate magnetic
structure (kC = 0.5, -0.5, 0.5) follows the magnetic anisotropy of the local
easy axes of Mn3+, while the incommensurate one shows a spin-density-wave order
with kIC = (0,0,0.216). For LiMnO, on the other hand, absence
of a long-range spin ordered state down to 1.5 K is confirmed.Comment: 11 pages, 8 figure
Magnetic field amplification and electron acceleration to near-energy equipartition with ions by a mildly relativistic quasi-parallel plasma protoshock
The prompt emissions of gamma-ray bursts are seeded by radiating
ultrarelativistic electrons. Internal shocks propagating through a jet launched
by a stellar implosion, are expected to amplify the magnetic field & accelerate
electrons. We explore the effects of density asymmetry & a quasi-parallel
magnetic field on the collision of plasma clouds. A 2D relativistic PIC
simulation models the collision of two plasma clouds, in the presence of a
quasi-parallel magnetic field. The cloud density ratio is 10. The densities of
ions & electrons & the temperature of 131 keV are equal in each cloud. The mass
ratio is 250. The peak Lorentz factor of the electrons is determined, along
with the orientation & strength of the magnetic field at the cloud collision
boundary. The magnetic field component orthogonal to the initial plasma flow
direction is amplified to values that exceed those expected from shock
compression by over an order of magnitude. The forming shock is
quasi-perpendicular due to this amplification, caused by a current sheet which
develops in response to the differing deflection of the incoming upstream
electrons & ions. The electron deflection implies a charge separation of the
upstream electrons & ions; the resulting electric field drags the electrons
through the magnetic field, whereupon they acquire a relativistic mass
comparable to the ions. We demonstrate how a magnetic field structure
resembling the cross section of a flux tube grows in the current sheet of the
shock transition layer. Plasma filamentation develops, as well as signatures of
orthogonal magnetic field striping. Localized magnetic bubbles form. Energy
equipartition between the ion, electron & magnetic energy is obtained at the
shock transition layer. The electronic radiation can provide a seed photon
population that can be energized by secondary processes (e.g. inverse Compton).Comment: 12 pages, 15 Figures, accepted to A&
Heterogeneity after harmonisation: a retrospective cohort study of bleeding and stroke risk after the introduction of direct oral anticoagulants in four Western European countries
Purpose: Database heterogeneity can impact effect estimates. Harmonisation provided by common protocols and common data models (CDMs) can increase the validity of pharmacoepidemiologic research. In a case study measuring the changes in the safety and effectiveness of stroke prevention therapy after the introduction of direct oral anticoagulants (DOACs), we performed an international comparison. Methods: Using data from Stockholm, Denmark, Scotland and Norway, harmonised with a common protocol and CDM, two calendar-based cohorts were created: 2012 and 2017. Patients with a diagnosis code of atrial fibrillation 5 years preceding the 1-year cohort window were included. DOAC, vitamin K antagonist and aspirin treatment were assessed in the 6 months prior to the start of each year while strokes and bleeds were assessed during the year. A Poisson regression generated incidence rate ratios (IRRs) to compare outcomes from 2017 to 2012 adjusted for changes in individual-level baseline characteristics. Results: In 280 359 patients in the 2012 cohort and 356 779 in the 2017 cohort, treatment with OACs increased on average from 45% to 65%, while treatment with aspirin decreased from 30% to 10%. In all countries except Scotland, there were decreases in the risk of stroke and no changes in bleeding risk, after adjustment for changes in baseline characteristics. In Scotland, major bleeding (IRR 1.09, 95% confidence interval [CI] [1.00; 1.18]) and intracranial haemorrhage (IRR 1.31, 95% CI [1.13; 1.52]) increased from 2012 to 2017. Conclusions: Stroke prevention therapy improved from 2012 to 2017 with a corresponding reduction in stroke risk without increasing the risk of bleeding in all countries, except Scotland. The heterogeneity that remains after methodological harmonisation can be informative of the underlying population and database
- âŠ