802 research outputs found

    Longitudinal relationships between caloric expenditure and gray matter in the cardiovascular health study

    Get PDF
    Background: Physical activity (PA) can be neuroprotective and reduce the risk for Alzheimer’s disease (AD). In assessing physical activity, caloric expenditure is a proxy marker reflecting the sum total of multiple physical activity types conducted by an individual. Objective:To assess caloric expenditure, as a proxy marker of PA, as a predictive measure of gray matter (GM) volumes in the normal and cognitively impaired elderly persons. Methods: All subjects in this study were recruited from the Institutional Review Board approved Cardiovascular Health Study (CHS), a multisite population-based longitudinal study in persons aged 65 and older. We analyzed a sub-sample of CHS participants 876 subjects (mean age 78.3, 57.5% F, 42.5% M) who had i) energy output assessed as kilocalories (kcal) per week using the standardized Minnesota Leisure-Time Activities questionnaire, ii) cognitive assessments for clinical classification of normal cognition, mild cognitive impairment (MCI), and AD, and iii) volumetric MR imaging of the brain. Voxel-based morphometry modeled the relationship between kcal/week and GM volumes while accounting for standard covariates including head size, age, sex, white matter hyperintensity lesions, MCI or AD status, and site. Multiple comparisons were controlled using a False Discovery Rate of 5 percent. Results: Higher energy output, from a variety of physical activity types, was associated with larger GM volumes in frontal, temporal, and parietal lobes, as well as hippocampus, thalamus, and basal ganglia. High levels of caloric expenditure moderated neurodegeneration-associated volume loss in the precuneus, posterior cingulate, and cerebellar vermis. Conclusion:Increasing energy output from a variety of physical activities is related to larger gray matter volumes in the elderly, regardless of cognitive status.Cyrus A. Raji, David A. Merrill, Harris Eyre, Sravya Mallam, Nare Torosyan, Kirk I. Erickson, Oscar L. Lopez , James T. Becker, Owen T. Carmichael, H. Michael Gach, Paul M. Thompson, W.T. Longstreth, Jr. and Lewis H. Kulle

    Viperin interacts with PEX19 to mediate peroxisomal augmentation of the innate antiviral response.

    Get PDF
    Peroxisomes are recognized as significant platforms for the activation of antiviral innate immunity where stimulation of the key adapter molecule mitochondrial antiviral signaling protein (MAVS) within the RIG-I like receptor (RLR) pathway culminates in the up-regulation of hundreds of ISGs, some of which drive augmentation of multiple innate sensing pathways. However, whether ISGs can augment peroxisome-driven RLR signaling is currently unknown. Using a proteomics-based screening approach, we identified Pex19 as a binding partner of the ISG viperin. Viperin colocalized with numerous peroxisomal proteins and its interaction with Pex19 was in close association with lipid droplets, another emerging innate signaling platform. Augmentation of the RLR pathway by viperin was lost when Pex19 expression was reduced. Expression of organelle-specific MAVS demonstrated that viperin requires both mitochondria and peroxisome MAVS for optimal induction of IFN-β. These results suggest that viperin is required to enhance the antiviral cellular response with a possible role to position the peroxisome at the mitochondrial/MAM MAVS signaling synapse, furthering our understanding of the importance of multiple organelles driving the innate immune response against viral infection

    6-month multidisciplinary follow-up and outcomes of patients with paediatric inflammatory multisystem syndrome (PIMS-TS) at a UK tertiary paediatric hospital: a retrospective cohort study.

    Get PDF
    BACKGROUND: Paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) is a new, rare, post-infectious complication of SARS-CoV-2 infection in children. We aimed to describe the 6-month outcomes of PIMS-TS. METHODS: This retrospective cohort study comprised children (aged <18 years) who fulfilled the UK Royal College of Paediatrics and Child Health (RCPCH) diagnostic criteria for PIMS-TS and were admitted to Great Ormond Street Hospital (London, UK) between April 4 and Sept 1, 2020. Patients were followed up by a multidisciplinary team of specialists at 6 weeks and 6 months after admission. Biochemical and functional outcomes were analysed. FINDINGS: 46 children were included in this study. The median age at presentation was 10·2 years (IQR 8·8-13·3), 30 (65%) patients were male and 16 (35%) were female, 37 (80%) were from minority ethnic groups, and eight (17%) had pre-existing comorbidities. All patients had elevated markers of systemic inflammation at baseline. None of the patients died. By 6 months, systemic inflammation was resolved in all but one patient. 38 (90%) of 42 patients who had positive SARS-CoV-2 IgG antibodies within 6 weeks of admission remained seropositive at 6 months. Echocardiograms were normal in 44 (96%) of 46 patients by 6 months, and gastrointestinal symptoms that were reported in 45 (98%) of 46 patients at onset were present in six (13%) of 46 patients at 6 months. Renal, haematological, and otolaryngological findings largely resolved by 6 months. Although minor abnormalities were identified on neurological examination in 24 (52%) of 46 patients at 6 weeks and in 18 (39%) of 46 at 6 months, we found minimal functional impairment at 6 months (median Expanded Disability Status Scale score 0 [IQR 0-1]). Median manual muscle test-8 scores improved from 53 (IQR 43-64) during hospital admission to 80 (IQR 68-80) at 6 months, but 18 (45%) of 40 patients showed 6-min walk test results below the third centile for their age or sex at 6 months. PedsQL responses revealed severe emotional difficulties at 6 months (seven [18%] of 38 by parental report and eight [22%] of 38 by self report). 45 (98%) of 46 patients were back in full-time education (virtually or face to face) by 6 months. INTERPRETATION: Despite initial severe illness, few organ-specific sequelae were observed at 6 months. Ongoing concerns requiring physical re-conditioning and mental health support remained, and physiotherapy assessments revealed persisting poor exercise tolerance. Longer-term follow-up will help define the extended natural history of PIMS-TS. FUNDING: None

    Role of carbonate burial in Blue Carbon budgets

    Get PDF
    Calcium carbonates (CaCO3) often accumulate in mangrove and seagrass sediments. As CaCO3 production emits CO2, there is concern that this may partially offset the role of Blue Carbon ecosystems as CO2sinks through the burial of organic carbon (Corg). A global collection of data on inorganic carbon burial rates (Cinorg, 12% of CaCO3 mass) revealed global rates of 0.8 TgCinorg yr−1 and 15–62 TgCinorg yr−1 in mangrove and seagrass ecosystems, respectively. In seagrass, CaCO3burial may correspond to an offset of 30% of the net CO2 sequestration. However, a mass balance assessment highlights that the Cinorg burial is mainly supported by inputs from adjacent ecosystems rather than by local calcification, and that Blue Carbon ecosystems are sites of net CaCO3 dissolution. Hence, CaCO3 burial in Blue Carbon ecosystems contribute to seabed elevation and therefore buffers sea-level rise, without undermining their role as CO2 sinks

    Bidirectional alterations in brain temperature profoundly modulate spatiotemporal neurovascular responses in-vivo

    Get PDF
    Neurovascular coupling (NVC) is a mechanism that, amongst other known and latent critical functions, ensures activated brain regions are adequately supplied with oxygen and glucose. This biological phenomenon underpins non-invasive perfusion-related neuroimaging techniques and recent reports have implicated NVC impairment in several neurodegenerative disorders. Yet, much remains unknown regarding NVC in health and disease, and only recently has there been burgeoning recognition of a close interplay with brain thermodynamics. Accordingly, we developed a novel multi-modal approach to systematically modulate cortical temperature and interrogate the spatiotemporal dynamics of sensory-evoked NVC. We show that changes in cortical temperature profoundly and intricately modulate NVC, with low temperatures associated with diminished oxygen delivery, and high temperatures inducing a distinct vascular oscillation. These observations provide novel insights into the relationship between NVC and brain thermodynamics, with important implications for brain-temperature related therapies, functional biomarkers of elevated brain temperature, and in-vivo methods to study neurovascular coupling

    Viperin is an important host restriction factor in control of Zika virus infection

    Get PDF
    Published online 30 June 2017Zika virus (ZIKV) infection has emerged as a global health threat and infection of pregnant women causes intrauterine growth restriction, spontaneous abortion and microcephaly in newborns. Here we show using biologically relevant cells of neural and placental origin that following ZIKV infection, there is attenuation of the cellular innate response characterised by reduced expression of IFN-β and associated interferon stimulated genes (ISGs). One such ISG is viperin that has well documented antiviral activity against a wide range of viruses. Expression of viperin in cultured cells resulted in significant impairment of ZIKV replication, while MEFs derived from CRISPR/Cas9 derived viperin-/- mice replicated ZIKV to higher titers compared to their WT counterparts. These results suggest that ZIKV can attenuate ISG expression to avoid the cellular antiviral innate response, thus allowing the virus to replicate unchecked. Moreover, we have identified that the ISG viperin has significant anti-ZIKV activity. Further understanding of how ZIKV perturbs the ISG response and the molecular mechanisms utilised by viperin to suppress ZIKV replication will aid in our understanding of ZIKV biology, pathogenesis and possible design of novel antiviral strategies.Kylie H. Van der Hoek, Nicholas S. Eyre, Byron Shue, Onruedee Khantisitthiporn, Kittirat Glab-Ampi, Jillian M. Carr, Matthew J. Gartner, Lachlan A. Jolly, Paul Q. Thomas, Fatwa Adikusuma, Tanja Jankovic-Karasoulos, Claire T. Roberts, Karla J. Helbig and Michael R. Bear

    Chapter 9 - Buildings

    Get PDF
    This chapter aims to update the knowledge on the building sector since the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) from a mitigation perspective. Buildings and activities in buildings are responsible for a significant share of GHG emissions, but they are also the key to mitigation strategies. In 2010, the building sector accounted for approximately 117 Exajoules (EJ) or 32% of global final energy consumption and 19% of energy-related CO2 emissions; and 51% of global electricity consumption. Buildings contribute to a significant amount of F-gas emissions, with large differences in reported figures due to differing accounting conventions, ranging from around an eighth to a third of all such emissions. The chapter argues that beyond a large emission role, mitigation opportunities in this sector are also significant, often very cost-effective, and are in many times associated with significant co-benefits that can exceed the direct benefits by orders of magnitude. The sector has significant mitigation potentials at low or even negative costs. Nevertheless, without strong actions emissions are likely to grow considerably - and they may even double by mid-century - due to several drivers. The chapter points out that certain policies have proven to be very effective and several new ones are emerging. As a result, building energy use trends have been reversed to stagnation or even reduction in some jurisdictions in recent years, despite the increases in affluence and population. The chapter uses a novel conceptual framework, in line with the general analytical framework of the contribution of Working Group III (WGIII) to the IPCC Fifth Assessment Report (AR5), which focuses on identities as an organizing principle

    Symptoms and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Positivity in the General Population in the United Kingdom

    Get PDF
    BACKGROUND: “Classic” symptoms (cough, fever, loss of taste/smell) prompt severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR) testing in the United Kingdom. Studies have assessed the ability of different symptoms to identify infection, but few have compared symptoms over time (reflecting variants) and by vaccination status. METHODS: Using the COVID-19 Infection Survey, sampling households across the United Kingdom, we compared symptoms in PCR-positives vs PCR-negatives, evaluating sensitivity of combinations of 12 symptoms (percentage symptomatic PCR-positives reporting specific symptoms) and tests per case (TPC) (PCR-positives or PCR-negatives reporting specific symptoms/ PCR-positives reporting specific symptoms). RESULTS: Between April 2020 and August 2021, 27 869 SARS-CoV-2 PCR-positive episodes occurred in 27 692 participants (median 42 years), of whom 13 427 (48%) self-reported symptoms (“symptomatic PCR-positives”). The comparator comprised 3 806 692 test-negative visits (457 215 participants); 130 612 (3%) self-reported symptoms (“symptomatic PCR-negatives”). Symptom reporting in PCR-positives varied by age, sex, and ethnicity, and over time, reflecting changes in prevalence of viral variants, incidental changes (eg, seasonal pathogens (with sore throat increasing in PCR-positives and PCR-negatives from April 2021), schools reopening) and vaccination rollout. After May 2021 when Delta emerged, headache and fever substantially increased in PCR-positives, but not PCR-negatives. Sensitivity of symptom-based detection increased from 74% using “classic” symptoms, to 81% adding fatigue/weakness, and 90% including all 8 additional symptoms. However, this increased TPC from 4.6 to 5.3 to 8.7. CONCLUSIONS: Expanded symptom combinations may provide modest benefits for sensitivity of PCR-based case detection, but this will vary between settings and over time, and increases tests/case. Large-scale changes to targeted PCR-testing approaches require careful evaluation given substantial resource and infrastructure implications

    The effects of locomotion on sensory-evoked haemodynamic responses in the cortex of awake mice

    Get PDF
    Investigating neurovascular coupling in awake rodents is becoming ever more popular due, in part, to our increasing knowledge of the profound impacts that anaesthesia can have upon brain physiology. Although awake imaging brings with it many advantages, we still do not fully understand how voluntary locomotion during imaging affects sensory-evoked haemodynamic responses. In this study we investigated how evoked haemodynamic responses can be affected by the amount and timing of locomotion. Using an awake imaging set up, we used 2D-Optical Imaging Spectroscopy (2D-OIS) to measure changes in cerebral haemodynamics within the sensory cortex of the brain during either 2 s whisker stimulation or spontaneous (no whisker stimulation) experiments, whilst animals could walk on a spherical treadmill. We show that locomotion alters haemodynamic responses. The amount and timing of locomotion relative to whisker stimulation is important, and can significantly impact sensory-evoked haemodynamic responses. If locomotion occurred before or during whisker stimulation, the amplitude of the stimulus-evoked haemodynamic response was significantly altered. Therefore, monitoring of locomotion during awake imaging is necessary to ensure that conclusions based on comparisons of evoked haemodynamic responses (e.g., between control and disease groups) are not confounded by the effects of locomotion

    Virus Replication as a Phenotypic Version of Polynucleotide Evolution

    Full text link
    In this paper we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius, Schuster and Sigmund ("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46 (1985) 239-262), in their study of polynucleotide evolution. By taking into account beneficial effects we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull, Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18 (2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium" and transient. Finally, based on these quantitative results we are able to draw some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text overlap with arXiv:1110.336
    corecore