282 research outputs found

    Production of Inactivated Influenza H5N1 Vaccines from MDCK Cells in Serum-Free Medium

    Get PDF
    BACKGROUND: Highly pathogenic influenza viruses pose a constant threat which could lead to a global pandemic. Vaccination remains the principal measure to reduce morbidity and mortality from such pandemics. The availability and surging demand for pandemic vaccines needs to be addressed in the preparedness plans. This study presents an improved high-yield manufacturing process for the inactivated influenza H5N1 vaccines using Madin-Darby canine kidney (MDCK) cells grown in a serum-free (SF) medium microcarrier cell culture system. PRINCIPAL FINDING: The current study has evaluated the performance of cell adaptation switched from serum-containing (SC) medium to several commercial SF media. The selected SF medium was further evaluated in various bioreactor culture systems for process scale-up evaluation. No significant difference was found in the cell growth in different sizes of bioreactors studied. In the 7.5 L bioreactor runs, the cell concentration reached to 2.3 × 10(6) cells/mL after 5 days. The maximum virus titers of 1024 Hemagglutinin (HA) units/50 µL and 7.1 ± 0.3 × 10(8) pfu/mL were obtained after 3 days infection. The concentration of HA antigen as determined by SRID was found to be 14.1 µg/mL which was higher than those obtained from the SC medium. A mouse immunogenicity study showed that the formalin-inactivated purified SF vaccine candidate formulated with alum adjuvant could induce protective level of virus neutralization titers similar to those obtained from the SC medium. In addition, the H5N1 viruses produced from either SC or SF media showed the same antigenic reactivity with the NIBRG14 standard antisera. CONCLUSIONS: The advantages of this SF cell-based manufacturing process could reduce the animal serum contamination, the cost and lot-to-lot variation of SC medium production. This study provides useful information to manufacturers that are planning to use SF medium for cell-based influenza vaccine production

    A cross-lingual adaptation approach for rapid development of speech recognizers for learning disabled users

    Get PDF
    Building a voice-operated system for learning disabled users is a difficult task that requires a considerable amount of time and effort. Due to the wide spectrum of disabilities and their different related phonopathies, most approaches available are targeted to a specific pathology. This may improve their accuracy for some users, but makes them unsuitable for others. In this paper, we present a cross-lingual approach to adapt a general-purpose modular speech recognizer for learning disabled people. The main advantage of this approach is that it allows rapid and cost-effective development by taking the already built speech recognition engine and its modules, and utilizing existing resources for standard speech in different languages for the recognition of the users’ atypical voices. Although the recognizers built with the proposed technique obtain lower accuracy rates than those trained for specific pathologies, they can be used by a wide population and developed more rapidly, which makes it possible to design various types of speech-based applications accessible to learning disabled users.This research was supported by the project ‘Favoreciendo la vida autónoma de discapacitados intelectuales con problemas de comunicación oral mediante interfaces personalizados de reconocimiento automático del habla’, financed by the Centre of Initiatives for Development Cooperation (Centro de Iniciativas de Cooperación al Desarrollo, CICODE), University of Granada, Spain. This research was supported by the Student Grant Scheme 2014 (SGS) at the Technical University of Liberec

    Emulsified Nanoparticles Containing Inactivated Influenza Virus and CpG Oligodeoxynucleotides Critically Influences the Host Immune Responses in Mice

    Get PDF
    Antigen sparing and cross-protective immunity are regarded as crucial in pandemic influenza vaccine development. Both targets can be achieved by adjuvantation strategy to elicit a robust and broadened immune response. We assessed the immunogenicity of an inactivated H5N1 whole-virion vaccine (A/Vietnam/1194/2004 NIBRG-14, clade 1) formulated with emulsified nanoparticles and investigated whether it can induce cross-clade protecting immunity.After formulation with PELC, a proprietary water-in-oil-in-water nanoemulsion comprising of bioresorbable polymer/Span(R)85/squalene, inactivated virus was intramuscularly administered to mice in either one-dose or two-dose schedule. We found that the antigen-specific serum antibody responses elicited after two doses of non-adjuvanted vaccine were lower than those observed after a single dose of adjuvanted vaccine, PELC and the conventional alum adjuvant as well. Moreover, 5 microg HA of PELC-formulated inactivated virus were capable of inducing higher antibodies than those obtained from alum-adjuvanted vaccine. In single-dose study, we found that encapsulating inactivated virus into emulsified PELC nanoparticles could induce better antibody responses than those formulated with PELC-adsorbed vaccine. However, the potency was rather reduced when the inactivated virus and CpG (an immunostimulatory oligodeoxynucleotide containing unmethylated cytosine-guanosine motifs) were co-encapsulated within the emulsion. Finally, the mice who received PELC/CpG(adsorption)-vaccine could easily and quickly reach 100% of seroprotection against a homologous virus strain and effective cross-protection against a heterologous virus strain (A/Whooper swan/Mongolia/244/2005, clade 2.2).Encapsulating inactivated H5N1 influenza virus and CpG into emulsified nanoparticles critically influences the humoral responses against pandemic influenza. These results demonstrated that the use of PELC could be as antigen-sparing in preparation for a potential shortage of prophylactic vaccines against local infectious diseases, in particular pandemic influenza. Moreover, the cross-clade neutralizing antibody responses data verify the potential of such adjuvanted H5N1 candidate vaccine as an effective tool in pre-pandemic preparedness

    Indications for implant removal after fracture healing: a review of the literature

    Get PDF
    Introduction: The aim of this review was to collect and summarize published data on the indications for implant removal after fracture healing, since these are not well defined and guidelines hardly exist. Methods: A literature search was performed. Results: Though there are several presumed benefits of implant removal, such as functional improvement and pain relief, the surgical procedure can be very challenging and may lead to complications or even worsening of the complaints. Research has focused on the safety of metal implants (e.g., risk of corrosion, allergy, and carcinogenesis). For these reasons, implants have been removed routinely for decades. Along with the introduction of titanium alloy implants, the need for implant removal became a subject of debate in view of potential (dis)advantages since, in general, implants made of titanium alloys are more difficult to remove. Currently, the main indications for removal from both the upper and lower extremity are mostly 'relative' and patient-driven, such as pain, prominent material, or simply the request for removal. True medical indications like infection or intra-articular material are minor reasons. Conclusion: This review illustrates the great variety of view points in the literature, with large differences in opinions and practices about the indications for implant removal after fracture healing. Since some studies have described asymptomatic patients developing complaints after removal, the general advice nowadays is to remove implants after fracture healing only in symptomatic patients and after a proper informed consent. Well-designed prospective studies on this subject are urgently needed in order to form guidelines based on scientific evidence

    Isolation and Characterization of Novel Murine Epiphysis Derived Mesenchymal Stem Cells

    Get PDF
    BACKGROUND: While bone marrow (BM) is a rich source of mesenchymal stem cells (MSCs), previous studies have shown that MSCs derived from mouse BM (BMMSCs) were difficult to manipulate as compared to MSCs derived from other species. The objective of this study was to find an alternative murine MSCs source that could provide sufficient MSCs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we described a novel type of MSCs that migrates directly from the mouse epiphysis in culture. Epiphysis-derived MSCs (EMSCs) could be extensively expanded in plastic adherent culture, and they had a greater ability for clonogenic formation and cell proliferation than BMMSCs. Under specific induction conditions, EMSCs demonstrated multipotency through their ability to differentiate into adipocytes, osteocytes and chondrocytes. Immunophenotypic analysis demonstrated that EMSCs were positive for CD29, CD44, CD73, CD105, CD166, Sca-1 and SSEA-4, while negative for CD11b, CD31, CD34 and CD45. Notably, EMSCs did not express major histocompatibility complex class I (MHC I) or MHC II under our culture system. EMSCs also successfully suppressed the proliferation of splenocytes triggered by concanavalin A (Con A) or allogeneic splenocytes, and decreased the expression of IL-1, IL-6 and TNF-α in Con A-stimulated splenocytes suggesting their anti-inflammatory properties. Moreover, EMSCs enhanced fracture repair, ameliorated necrosis in ischemic skin flap, and improved blood perfusion in hindlimb ischemia in the in vivo experiments. CONCLUSIONS/SIGNIFICANCES: These results indicate that EMSCs, a new type of MSCs established by our simple isolation method, are a preferable alternative for mice MSCs due to their better growth and differentiation potentialities

    Association of Variants in the SPTLC1 Gene with Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation. Objective: To identify the genetic variants associated with juvenile ALS. Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism. Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members. Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway. Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.

    Epithelial cell polarity: a major gatekeeper against cancer?

    Get PDF
    The correct establishment and maintenance of cell polarity are crucial for normal cell physiology and tissue homeostasis. Conversely, loss of cell polarity, tissue disorganisation and excessive cell growth are hallmarks of cancer. In this review, we focus on identifying the stages of tumoural development that are affected by the loss or deregulation of epithelial cell polarity. Asymmetric division has recently emerged as a major regulatory mechanism that controls stem cell numbers and differentiation. Links between cell polarity and asymmetric cell division in the context of cancer will be examined. Apical–basal polarity and cell–cell adhesion are tightly interconnected. Hence, how loss of cell polarity in epithelial cells may promote epithelial mesenchymal transition and metastasis will also be discussed. Altogether, we present the argument that loss of epithelial cell polarity may have an important role in both the initiation of tumourigenesis and in later stages of tumour development, favouring the progression of tumours from benign to malignancy

    The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Cirrhosis and other chronic liver diseases (collectively referred to as cirrhosis in this paper) are a major cause of morbidity and mortality globally, although the burden and underlying causes differ across locations and demographic groups. We report on results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 on the burden of cirrhosis and its trends since 1990, by cause, sex, and age, for 195 countries and territories. Methods We used data from vital registrations, vital registration samples, and verbal autopsies to estimate mortality. We modelled prevalence of total, compensated, and decompensated cirrhosis on the basis of hospital and claims data. Disability-adjusted life-years (DALYs) were calculated as the sum of years of life lost due to premature death and years lived with disability. Estimates are presented as numbers and age-standardised or age-specific rates per 100 000 population, with 95% uncertainty intervals (UIs). All estimates are presented for five causes of cirrhosis: hepatitis B, hepatitis C, alcohol-related liver disease, non-alcoholic steatohepatitis (NASH), and other causes. We compared mortality, prevalence, and DALY estimates with those expected according to the Socio-demographic Index (SDI) as a proxy for the development status of regions and countries. Findings In 2017, cirrhosis caused more than 1.32 million (95% UI 1.27-1.45) deaths (440000 [416 000-518 000; 33.3%] in females and 883 000 [838 000-967 000; 66.7%] in males) globally, compared with less than 899 000 (829 000-948 000) deaths in 1990. Deaths due to cirrhosis constituted 2.4% (2.3-2.6) of total deaths globally in 2017 compared with 1.9% (1.8-2.0) in 1990. Despite an increase in the number of deaths, the age-standardised death rate decreased from 21.0 (19.2-22.3) per 100 000 population in 1990 to 16.5 (15.8-18-1) per 100 000 population in 2017. Sub-Saharan Africa had the highest age-standardised death rate among GBD super-regions for all years of the study period (32.2 [25.8-38.6] deaths per 100 000 population in 2017), and the high-income super-region had the lowest (10.1 [9.8-10-5] deaths per 100 000 population in 2017). The age-standardised death rate decreased or remained constant from 1990 to 2017 in all GBD regions except eastern Europe and central Asia, where the age-standardised death rate increased, primarily due to increases in alcohol-related liver disease prevalence. At the national level, the age-standardised death rate of cirrhosis was lowest in Singapore in 2017 (3.7 [3.3-4.0] per 100 000 in 2017) and highest in Egypt in all years since 1990 (103.3 [64.4-133.4] per 100 000 in 2017). There were 10.6 million (10.3-10.9) prevalent cases of decompensated cirrhosis and 112 million (107-119) prevalent cases of compensated cirrhosis globally in 2017. There was a significant increase in age-standardised prevalence rate of decompensated cirrhosis between 1990 and 2017. Cirrhosis caused by NASH had a steady age-standardised death rate throughout the study period, whereas the other four causes showed declines in age-standardised death rate. The age-standardised prevalence of compensated and decompensated cirrhosis due to NASH increased more than for any other cause of cirrhosis (by 33.2% for compensated cirrhosis and 54.8% for decompensated cirrhosis) over the study period. From 1990 to 2017, the number of prevalent cases snore than doubled for compensated cirrhosis due to NASH and more than tripled for decompensated cirrhosis due to NASH. In 2017, age-standardised death and DALY rates were lower among countries and territories with higher SDI. Interpretation Cirrhosis imposes a substantial health burden on many countries and this burden has increased at the global level since 1990, partly due to population growth and ageing. Although the age-standardised death and DALY rates of cirrhosis decreased from 1990 to 2017, numbers of deaths and DALYs and the proportion of all global deaths due to cirrhosis increased. Despite the availability of effective interventions for the prevention and treatment of hepatitis B and C, they were still the main causes of cirrhosis burden worldwide, particularly in low-income countries. The impact of hepatitis B and C is expected to be attenuated and overtaken by that of NASH in the near future. Cost-effective interventions are required to continue the prevention and treatment of viral hepatitis, and to achieve early diagnosis and prevention of cirrhosis due to alcohol-related liver disease and NASH. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
    corecore