538 research outputs found
Physico-Chemical Evolution, Gill Mda Concentration And Histology Of Tilapia Exposed To Mixed Effluent In Okrika River, Rivers State, Nigeria
The physico-chemical evaluation and histological studies on Tilapia (Oreochromis niloticus) exposed to mixed effluent (industrial, domestic and municipal) from Okrika River were investigated. Tilapia samples were collected at about 500 meters from point of entry of mixed effluent into the River (downstream) and about 1.5 kilometers from the point of entry of mixed effluent into the River (upstream) while Tilapia from a fish pond affiliated to Rivers State Sustainable Development Authority (RSSDA) was used as control. Malondialdehyde (MDA) concentration was assayed in the gill homogenates in the Tilapia fish blood serum. It was observed that the biological oxygen demand (BOD), total dissolved solids (TDS), total suspended solids (TSS), conductivity, chromium and cadmium were significantly higher in concentrations in the Okrika River exceeding FEPA regulations in Nigeria. Aside chromium whose concentration was more upstream of the river, BOD, TDS, TSS, conductivity and cadmium show more concentration downstream of the river. Results showed an increase in gill MDA concentration upstream samples (0.00±0.00 to 1.51± 0.24nm/mg), downstream samples (1.51±0.24 to 2.32±0.66nm/mg) and the control samples (2.32±0.66 to 2.70±0.89nm/mg). No significant change was also observed in gill MDA concentration of both downstream and upstream samples when compared with the control. Histology of the gill showed vacuolar degeneration, focal areas of necrosis and aggregation of inflammatory cells between the hepatocytes. From the investigation, the mixed effluents discharged into the river are toxic to the marine environment. Key words: Physico-chemical, Histological, Effluent, Malondialdehyde and Tilapia
Controlled damaging and repair of self-organized nanostructures by atom manipulation at room temperature
The possibility of controlled local demolition and repair of the recently discovered self-organized Pt nanowires on Ge(001) surfaces has been explored. These nanowires are composed of Pt dimers, which are found to be rather weakly bound to the underlying substrate. Using this property, we demonstrate the possibility of carrying the constituting dimers of the Pt nanowires from point to point with atomic precision at room temperature. Pt dimers can be picked-up in two configurations: (i) a horizontal configuration at the tip apex, resulting in double tip images and (ii) a configuration where the Pt dimer is attached to the side of the tip apex, resulting in well-defined atomically resolved images
Expression of a Barhl1a reporter in subsets of retinal ganglion cells and commissural neurons of the developing zebrafish brain
Promoting the regeneration or survival of retinal ganglion cells (RGCs) is one focus of regenerative medicine. Homeobox Barhl transcription factors might be instrumental in these processes. In mammals, only barhl2 is expressed in the retina and is required for both subtype identity acquisition of amacrine cells and for the survival of RGCs downstream of Atoh7, a transcription factor necessary for RGC genesis. The underlying mechanisms of this dual role of Barhl2 in mammals have remained elusive. Whole genome duplication in the teleost lineage generated the barhl1a and barhl2 paralogues. In the Zebrafish retina, Barhl2 functions as a determinant of subsets of amacrine cells lineally related to RGCs independently of Atoh7. In contrast, barhl1a expression depends on Atoh7 but its expression dynamics and function have not been studied. Here we describe for the first time a Barhl1a reporter line in vivo showing that barhl1a turns on exclusively in subsets of RGCs and their post-mitotic precursors. We also show transient expression of barhl1a:GFP in diencephalic neurons extending their axonal projections as part of the post-optic commissure, at the time of optic chiasm formation. This work sets the ground for future studies on RGC subtype identity, axonal projections and genetic specification of Barhl1a-positive RGCs and commissural neurons
Shifts and widths of collective excitations in trapped Bose gases by the dielectric formalism
We present predictions for the temperature dependent shifts and damping
rates. They are obtained by applying the dielectric formalism to a simple model
of a trapped Bose gas. Within the framework of the model we use lowest order
perturbation theory to determine the first order correction to the results of
Hartree-Fock-Bogoliubov-Popov theory for the complex collective excitation
frequencies, and present numerical results for the temperature dependence of
the damping rates and the frequency shifts. Good agreement with the
experimental values measured at JILA are found for the m=2 mode, while we find
disagreements in the shifts for m=0. The latter point to the necessity of a
non-perturbative treatment for an explanation of the temperature-dependence of
the m=0 shifts.Comment: 10 pages revtex, 3 figures in postscrip
Dielectric formalism and damping of collective modes in trapped Bose-Einstein condensed gases
We present the general dielectric formalism for Bose-Einstein condensed
systems in external potential at finite temperatures. On the basis of a model
arising within this framework as a first approximation in an intermediate
temperature region for large condensate we calculate the damping of low-energy
excitations in the collisionless regime.Comment: 4 pages, no figures, RevTe
Properties of excitations in systems with a spinor Bose-Einstein condensate
General theory in case of homogenous Bose-Einstein condensed systems with
spinor condensate is presented for the correlation functions of density and
spin fluctuations and for the one-particle propagators as well. The random
phase approximation is investigated and the damping of the modes is given in
the intermediate temperature region. It is shown that the collective and the
one-particle excitation spectra do not coincide fully.Comment: 5 pages, 1 figur
Supersymmetric Homogeneous Quantum Cosmologies Coupled to a Scalar Field
Recent work on supersymmetric Bianchi type IX cosmologies coupled to a
scalar field is extended to a general treatment of homogeneous quantum
cosmologies with explicitely solvable momentum constraints, i.e. Bianchi types
I, II, VII, VIII besides the Bianchi type IX, and special cases, namely the
Friedmann universes, the Kantowski-Sachs space, and Taub-NUT space. Besides the
earlier explicit solution of the Wheeler DeWitt equation for Bianchi type IX,
describing a virtual wormhole fluctuation, an additional explicit solution is
given and identified with the `no-boundary state'.Comment: 23 PAGE
Quantum states on supersymmetric minisuperspace with a cosmological constant
Spatially homogeneous models in quantum supergravity with a nonvanishing
cosmological constant are studied. A class of exact nontrivial solutions of the
supersymmetry and Lorentz constraints is obtained in terms of the Chern-Simons
action on the spatially homogeneous 3-manifold, both in Ashketar variables
where the solution is explicit up to reality conditions, and, more concretely,
in the tetrad-representation, where the solutions are given as integral
representations differing only by the contours of integration. In the limit of
a vanishing cosmological constant earlier exact solutions for Bianchi type IX
models in the tetrad-representation are recovered and additional asymmetric
solutions are found.Comment: 14 pages, late
Nonequilibrium dynamics of random field Ising spin chains: exact results via real space RG
Non-equilibrium dynamics of classical random Ising spin chains are studied
using asymptotically exact real space renormalization group. Specifically the
random field Ising model with and without an applied field (and the Ising spin
glass (SG) in a field), in the universal regime of a large Imry Ma length so
that coarsening of domains after a quench occurs over large scales. Two types
of domain walls diffuse in opposite Sinai random potentials and mutually
annihilate. The domain walls converge rapidly to a set of system-specific
time-dependent positions {\it independent of the initial conditions}. We obtain
the time dependent energy, magnetization and domain size distribution
(statistically independent). The equilibrium limits agree with known exact
results. We obtain exact scaling forms for two-point equal time correlation and
two-time autocorrelations. We also compute the persistence properties of a
single spin, of local magnetization, and of domains. The analogous quantities
for the spin glass are obtained. We compute the two-point two-time correlation
which can be measured by experiments on spin-glass like systems. Thermal
fluctuations are found to be dominated by rare events; all moments of truncated
correlations are computed. The response to a small field applied after waiting
time , as measured in aging experiments, and the fluctuation-dissipation
ratio are computed. For ,
, it equals its equilibrium value X=1, though time
translational invariance fails. It exhibits for aging regime
with non-trivial , different from mean field.Comment: 55 pages, 9 figures, revte
- âŠ