27 research outputs found

    Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Get PDF
    Background: The ‘exposome’ represents the accumulation of all environmental exposures across a lifetime. Topdown strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual’s metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods: High-resolution 1H NMR spectroscopy (metabonomics) was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results: Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4- deoxy-erythronic acid) or one-carbon metabolism (dimethylglycine, creatinine, creatine), were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels) was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions: This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental concentrations, paving the way for exposome research. Keywords: metabonomics, cadmium, environmental health, exposome, metabolomics, molecular epidemiolog

    Implication for Functions of the Ectopic Adipocyte Copper Amine Oxidase (AOC3) from Purified Enzyme and Cell-Based Kinetic Studies

    Get PDF
    AOC3 is highly expressed in adipocytes and smooth muscle cells, but its function in these cells is currently unknown. The in vivo substrate(s) of AOC3 is/are also unknown, but could provide an invaluable clue to the enzyme's function. Expression of untagged, soluble human AOC3 in insect cells provides a relatively simple means of obtaining pure enzyme. Characterization of enzyme indicates a 6% titer for the active site 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor and corrected kcat values as high as 7 s−1. Substrate kinetic profiling shows that the enzyme accepts a variety of primary amines with different chemical features, including nonphysiological branched-chain and aliphatic amines, with measured kcat/Km values between 102 and 104 M−1 s−1. Km(O2) approximates the partial pressure of oxygen found in the interstitial space. Comparison of the properties of purified murine to human enzyme indicates kcat/Km values that are within 3 to 4-fold, with the exception of methylamine and aminoacetone that are ca. 10-fold more active with human AOC3. With drug development efforts investigating AOC3 as an anti-inflammatory target, these studies suggest that caution is called for when screening the efficacy of inhibitors designed against human enzymes in non-transgenic mouse models. Differentiated murine 3T3-L1 adipocytes show a uniform distribution of AOC3 on the cell surface and whole cell Km values that are reasonably close to values measured using purified enzymes. The latter studies support a relevance of the kinetic parameters measured with isolated AOC3 variants to adipocyte function. From our studies, a number of possible substrates with relatively high kcat/Km have been discovered, including dopamine and cysteamine, which may implicate a role for adipocyte AOC3 in insulin-signaling and fatty acid metabolism, respectively. Finally, the demonstrated AOC3 turnover of primary amines that are non-native to human tissue suggests possible roles for the adipocyte enzyme in subcutaneous bacterial infiltration and obesity

    Geodynamic evolution of the SW Variscides: Orogenic collapse shown by new tectonometamorphic and isotopic data from western Ossa-Morena Zone, SW Iberia

    No full text
    The pre-Mesozoic geodynamic evolution of SW Iberia has been investigated on the basis of detailed structural analysis, isotope dating, and petrologic study of high-pressure (HP) rocks, revealing the superposition of several tectonometamorphic events: (1) An HP event older than circa 358 Ma is recorded in basic rocks preserved inside marbles, which suggests subduction of a continental margin. The deformation associated with this stage is recorded by a refractory graphite fabric and noncoaxial mesoscopic structures found within the host metasediments. The sense of shear is top to south, revealing thrusting synthetic with subduction (underthrusting) to the north. (2) Recrystallization before circa 358 Ma is due to a regional-scale thermal episode and magmatism. (3) Noncoaxial deformation with top to north sense of shear in northward dipping large-scale shear zones is associated with pervasive hydration and metamorphic retrogression under mostly greenschist facies. This indicates exhumation by normal faulting in a detachment zone confined to the top to north and north dipping shear zones during postorogenic collapse soon after 358 Ma ago (inversion of earlier top to south thrusts). (4) Static recrystallization at circa 318 Ma is due to regional-scale granitic intrusions. Citation: Rosas, F. M., F. O. Marques, M. Ballevre, and C. Tassinari (2008), Geodynamic evolution of the SW Variscides: Orogenic collapse shown by new tectonometamorphic and isotopic data from western Ossa-Morena Zone, SW Iberia, Tectonics, 27, TC6008, doi:10.1029/2008TC002333.Fundacao para a Ciencia e Tecnologia ( FCT)[PRAXIS XXI/BD/9220/96]TEAMINT[POCTI/CTE/48137/2002

    Garnet re-equilibration by coupled dissolution-reprecipitation: evidence from textural, major element and oxygen isotope zoning of 'cloudy' garnet

    No full text
    The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re-equilibration of these garnet crystals and to reconstruct the pressure-temperature-fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100-200μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell-shaped profile of spessartine component (7-3mol.%), an increase in grossular from 14 to 22mol.% and δ18O values between 9.5±0.3‰ and 10.4±0.2‰. Garnet inner rims (90-130μm) are fluid inclusion-rich and show a decreasing grossular component from 22 to 5mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14mol.%. The δ18O values decrease towards the margins of the crystals to a lowest value of 7.4±0.2‰. The outer rims (<10μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four-stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re-equilibration by coupled dissolution-reprecipitation at the temperature peak (630<T<650°C). This causes the creation of porosity as the coupled dissolution-reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim's domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution-reprecipitation is a possible re-equilibration process for garnet in metamorphic rocks and that intra-mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements

    Garnet re-equilibration by coupled dissolution-reprecipitation : evidence from textural, major element and oxygen isotope zoning of 'cloudy' garnet

    No full text
    The analysis of texture, major element and oxygen isotope compositions of cloudy garnet crystals from a metapelite sampled on Ikaria Island (Greece) is used to assess the model of growth and re-equilibration of these garnet crystals and to reconstruct the pressure-temperature-fluid history of the sample. Garnet crystals show complex textural and chemical zoning. Garnet cores (100-200μm) are devoid of fluid inclusions. They are characterized by growth zoning demonstrated by a bell-shaped profile of spessartine component (7-3mol.%), an increase in grossular from 14 to 22mol.% and δ¹⁸O values between 9.5±0.3‰ and 10.4±0.2‰. Garnet inner rims (90-130μm) are fluid inclusion-rich and show a decreasing grossular component from 22 to 5mol.%. The trend of the spessartine component observed in the inner rim allows two domains to be distinguished. In contrast to domain I, where the spessartine content shows the same trend as in the core, the spessartine content of domain II increases outwards from 2 to 14mol.%. The δ¹⁸O values decrease towards the margins of the crystals to a lowest value of 7.4±0.2‰. The outer rims (<10μm) are devoid of fluid inclusions and have the same chemical composition as the outermost part of domain II of the inner rim. Garnet crystals underwent a four-stage history. Stage 1: garnet growth during the prograde path in a closed system for oxygen. Garnet cores are remnants of this growth stage. Stage 2: garnet re-equilibration by coupled dissolution-reprecipitation at the temperature peak (630<T<650°C). This causes the creation of porosity as the coupled dissolution-reprecipitation process allows chemical (Ca) and isotopic (O) exchange between garnet inner rims and the matrix. The formation of the outer rim is related to the closure of porosity. Stage 3: garnet mode decreases during the early retrograde path, but garnet is still a stable phase. The resulting garnet composition is characterized by an increasing Mn content in the inner rim's domain II caused by intracrystalline diffusion. Stage 4: dissolution of garnet during the late retrograde path as garnet is not a stable phase anymore. This last stage forms corroded garnet. This study shows that coupled dissolution-reprecipitation is a possible re-equilibration process for garnet in metamorphic rocks and that intra-mineral porosity is an efficient pathway for chemical and isotopic exchange between garnet and the matrix, even for otherwise slow diffusing elements.19 page(s
    corecore