1,531 research outputs found

    ‘To Warm Our Hands’

    Get PDF
    Lovers often die shortly one after the other. Romeo and Juliet. June Carter and Johnny Cash. My grandfather and my grandmother. Leonard Cohen and Marianne Ihlen. Marianne was the inspiration, most famously, of Cohen’s song “So long, Marianne”, but also of “Bird on the wire” and poems from the collection Flowers for Hitler. Cohen’s last words for her reached her just two days before her death—and a few months before his own. They said: ‘you know that I’ve always loved you for your beauty and your wisdom, but I don\u27t need to say anything more about that because you know all about that’. And: ‘I am so close behind you that if you stretch out your hand, I think you can reach mine’ (at this point, tells the friend who read the letter to Marianne, she stretched out her hand). And: ‘Goodbye old friend. Endless love, see you down the road’

    Investigating the role of the experimental protocol in phenylhydrazine-induced anemia on mice recovery

    Get PDF
    Producción CientíficaProduction of red blood cells involves growth-factor mediated regulation of erythroid progenitor apoptosis and self-renewal. During severe anemia, characterized by a strong fall of the hematocrit followed by a recovery phase, these controls allow a fast recovery of the hematocrit and survival of the organism. Using a mathematical model of stress erythropoiesis and an ad hoc numerical method, we investigate the respective roles of anemia-inducing phenylhydrazine injections and physiological regulation on the organism’s recovery. By explicitly modeling the experimental protocol, we show that it mostly characterizes the fall of the hematocrit following the anemia and its severeness, while physiological process regulation mainly controls the recovery. We confront our model and our conclusions to similar experiments inducing anemia and show the model’s ability to reproduce several protocols of phenylhydrazine-induced anemia. In particular, we establish a link between phenylhydrazine effect and the severeness of the anemia.Ministerio de Economía, Industria y Competitividad (project MTM2014-56022-C2-2-P

    A numerical method for nonlinear age-structured population models with finite maximum age

    Get PDF
    AbstractWe propose a new numerical method for the approximation of solutions to a non-autonomous form of the classical Gurtin–MacCamy population model with a mortality rate that is the sum of an intrinsic age-dependent rate that becomes unbounded as the age approaches its maximum value, plus a non-local, non-autonomous, bounded rate that depends on some weighted population size. We prove that our new quadrature based method converges to second-order and we show the results of several numerical simulations

    Dynamics of a structured slug population model in the absence of seasonal variation

    Get PDF
    We develop a novel, nonlinear structured population model for the slug Deroceras reticulatum, a highly significant agricultural pest of great economic impact, in both organic and non-organic settings. In the absence of seasonal variations, we numerically explore the effect of life history traits that are dependent on an individual's size and measures of population biomass. We conduct a systematic exploration of parameter space and highlight the main mechanisms and implications of model design. A major conclusion of this work is that strong size dependent predation significantly adjusts the competitive balance, leading to non-monotonic steady state solutions and slowly decaying transients consisting of distinct generational cycles. Furthermore, we demonstrate how a simple ratio of adult to juvenile biomass can act as a useful diagnostic to distinguish between predated and non-predated environments, and may be useful in agricultural settings

    Configuration Complexities of Hydrogenic Atoms

    Full text link
    The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or shape complexity (i.e., the disequilibrium times the Shannon entropic power) of hydrogenic stationary states are investigated in both position and momentum spaces. First, it is shown that not only the Fisher information and the variance (then, the Cramer-Rao measure) but also the disequilibrium associated to the quantum-mechanical probability density can be explicitly expressed in terms of the three quantum numbers (n, l, m) of the corresponding state. Second, the three composite measures mentioned above are analytically, numerically and physically discussed for both ground and excited states. It is observed, in particular, that these configuration complexities do not depend on the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to quadratically depend on the principal quantum number n. Finally, sharp upper bounds to the Fisher-Shannon measure and the shape complexity of a general hydrogenic orbital are given in terms of the quantum numbers.Comment: 22 pages, 7 figures, accepted i

    Orbital stability of periodic waves for the nonlinear Schroedinger equation

    Full text link
    The nonlinear Schroedinger equation has several families of quasi-periodic travelling waves, each of which can be parametrized up to symmetries by two real numbers: the period of the modulus of the wave profile, and the variation of its phase over a period (Floquet exponent). In the defocusing case, we show that these travelling waves are orbitally stable within the class of solutions having the same period and the same Floquet exponent. This generalizes a previous work where only small amplitude solutions were considered. A similar result is obtained in the focusing case, under a non-degeneracy condition which can be checked numerically. The proof relies on the general approach to orbital stability as developed by Grillakis, Shatah, and Strauss, and requires a detailed analysis of the Hamiltonian system satisfied by the wave profile.Comment: 34 pages, 7 figure

    Impact of Scale Dependent Bias and Nonlinear Structure Growth on the ISW Effect: Angular Power Spectra

    Full text link
    We investigate the impact of nonlinear evolution of the gravitational potentials in the LCDM model on the Integrated Sachs-Wolfe (ISW) contribution to the CMB temperature power spectrum, and on the cross-power spectrum of the CMB and a set of biased tracers of the mass. We use an ensemble of N-body simulations to directly follow the potentials and compare results to perturbation theory (PT). The predictions from PT match the results to high precision for k<0.2 h/Mpc. We compute the nonlinear corrections to the angular power spectrum and find them to be <10% of linear theory for l<100. These corrections are swamped by cosmic variance. On scales l>100 the departures are more significant, however the CMB signal is more than a factor 10^3 larger at this scale. Nonlinear ISW effects therefore play no role in shaping the CMB power spectrum for l<1500. We analyze the CMB--density tracer cross-spectrum using simulations and renormalized bias PT, and find good agreement. The usual assumption is that nonlinear evolution enhances the growth of structure and counteracts linear ISW on small scales, leading to a change in sign of the CMB-LSS cross-spectrum at small scales. However, PT analysis suggests that this trend reverses at late times when the logarithmic growth rate f(a)=dlnD/dlna<0.5 or om_m(a)<0.3. Numerical results confirm these expectations and we find no sign change in ISW-LSS cross-power for low redshifts. Corrections due to nonlinearity and scale dependence of the bias are found to be <10% for l<100, therefore below the S/N of the current and future measurements. Finally, we estimate the CMB--halo cross-correlation coefficient and show that it can be made to match that for CMB--dark matter to within 5% for thin redshift shells, mitigating the need to model bias evolution.Comment: 27 pages, 19 figure. Hi-res. version: http://www.itp.uzh.ch/~res/NonlinearISW.HiRes.pd

    Implementation of pressurized air injection system in a Kaplan prototype for the reduction of vibration caused by tip vortex cavitation

    Get PDF
    Blade tip cavitation is a well-known phenomenon that affects the performance of large-diameter Kaplan turbines and induces structural vibration. Injection of pressurized air has been found to yield promising results in reducing those damaging effects. In this work, the results of an experimental test of air injection on a 9.5-m-diameter Kaplan turbine are reported. Experiments were performed for several load conditions and for two different net heads. Accelerations, pressure pulsation and noise emission were monitored for every tested condition. Results show that, at the expense of a maximum efficiency drop of 0.2%, air injection induces a decrease on the level of vibration from 57% up to 84%, depending on the load condition. Such decrease is seen to be proportional to the air flow rate, in the range from 0.06 to 0.8‰ (respect to the discharge at the best efficiency point).Facultad de Ingenierí
    corecore