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Abstract. Blade tip cavitation is a well-known phenomenon that affects the performance of 
large-diameter Kaplan turbines and induces structural vibration. Injection of pressurized air has 
been found to yield promising results in reducing those damaging effects. In this work, the 
results of an experimental test of air injection on a 9.5-m-diameter Kaplan turbine are reported. 
Experiments were performed for several load conditions and for two different net heads. 
Accelerations, pressure pulsation and noise emission were monitored for every tested 
condition. 
Results show that, at the expense of a maximum efficiency drop of 0.2%, air injection induces 
a decrease on the level of vibration from 57% up to 84%, depending on the load condition. 
Such decrease is seen to be proportional to the air flow rate, in the range from 0.06 to 0.8‰ 
(respect to the discharge at the best efficiency point). 

 

1.  Introduction 
Large-diameter Kaplan turbines may undergo vibration and erosion at the discharge ring due to the 
development of tip vortex cavitation phenomena. Severe erosion problems can compromise the 
lifetime of the machine or cause expensive repair stops. As such issues are difficult to foresee at the 
design stage, even with the help of CFD simulations and model tests, mitigation strategies have 
become an important subject. 
Air injection can be of help in these cases. On the one hand, the reduction of cavitation damage is due 
to the fact that the presence of a non-condensable gas inside a single cavitation bubble reduces the rate 
of collapse and increases the minimum bubble volume [1]. On the other hand, it was found recently 
[2] that miniscule amounts of non-condensable gas (air) into the shear layer of a partial cavity on a 
wedge could reduce the void fraction (i.e., the ratio of gas to water volumes), thus reducing the 
potential energy available for noise, vibration and erosion. 
Air injection has indeed shown potential in preventing erosion due to cavitation in such cases as the 
chute of spillways of hydroelectric dams [3]. Nevertheless, its application to hydro-turbines remains 
relatively unexplored and has been mainly confined to the prevention of flow instabilities in Francis 
turbines due to vortex rope development [4]. Arndt et al. [5] examined the effect of air injection on 
NACA profiles for the mitigation of cloud cavitation, and found that it was an effective method of 
minimizing the erosion potential. Consistent results were reported in [6] for an oscillating hydrofoil, 
where it was also noted that small amounts of air produce a large reduction in noise emission due to 
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cloud cavitation. Rivetti et al. [7, 8] performed air injection experiments for tip cavitation mitigation 
on a model scale Kaplan turbine, reaching a reduction of vibration levels at stationary parts of about 
50%.  
In this work, air injection experiments were performed on a prototype Kaplan turbine for which 
previous tests (at a model scale) were successful. Firstly, the case study and the experiment setup are 
presented. Then, the main results related to vibration reduction and pressure air injection are 
summarized. Finally, a deterministic expression for the injection pressure as a function of the air flow 
rate and the operational point of the turbine rate is given and a qualitative analysis of the physical 
mechanism of vibration reduction is discussed.    
The study introduced herein was carried out under the framework of a project focused on the dynamic 
behavior of Kaplan turbines that combines prototype measurements, model tests and CFD simulations, 
and is supported by the Yacyretá Binational Entity (EBY), the National University of La Plata, 
Argentina (UNLP) and the National University of Misiones, Argentina (UNAM). 

2.  Materials and methods 

2.1.  Case study 
This study concerns the hydro-power station of Yacyretá, which is located on the Parana River, at the 
border between Paraguay and Argentina. It is equipped with twenty Kaplan turbines of 9.5 meters of 
diameter. The specific speed is ns = 614, the maximum electric power is Pe  = 155 MW and the rated 
head is Hn = 22.7 m (Fig. 1). The discharge ring is made of stainless steel and presents a pattern of 
erosion due to cavitation that consists in 24 patches in coincidence with the number of guide vanes [9]. 
The runner has five blades (Zb = 5) and 24 guide vanes and stay vanes (Z0 = 24). The tip of the runner 
blades has an anti-cavitation lip covering the 60% of the blade chord.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 1. Kaplan hydro-power station layout of Yacyretá.   
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2.2.  Turbine instrumentation 
Two accelerometers Wilcoxin Research model 793L, a pressure transducer Keller series 21Y (PAA-
21Y) a sound level meter Bruel & Kjaer model 2270 BZ-7222 and a synchronization sensor were 
installed on the prototype turbine (Fig. 2).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Cross-section of the turbine with location of the sensors. 

2.3.  Air injection and acquisition system 
Air was injected through 60 evenly-spaced holes of 6 mm of diameter performed at the discharge ring, 
on a horizontal plane above the runner centerline (Fig. 3). The holes connect the flow passage with a 
manifold of triangular cross-section that surrounds the ring completely. The size of the holes was 
defined in order to have a homogeneous pressure along the manifold, thus guaranteeing a constant 
distribution of the injected air. A four-inch pipe connects the manifold with the high pressure line 
located at the electromechanic gallery.   

 
Figure 3. Cross-section of the discharge ring with the location of the air injection.  
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The goal of the injection system (Fig. 4) is to control and measure the desired air flow rate ��∗  at every 
step of the test. A pressurized air tank of 8.5 m3 (2) was capable of handling pressures higher than 6 
bar during 2 minutes. After that, a constant pressure system (5) assured a constant air flow rate during 
the test. Three globe valves (6) with different diameters allowed for a high sensitive air flow rate 
regulation. Two pressure transducers (3) were located in order to record the injection and feeding 
pressure (Pi and Pt). All the variables were recorded by an acquisition card (11) and downloaded into a 
hard disk (12). The state signals, Hn = net head, Q = discharge, Pe, α = distributor opening, β = blade 
tilt angle and T = temperature were acquired with a frequency of 120 Hz. The dynamic signals (AC1, 
AC2, SN, SP and SYCN), and the air injection variables (Pt, Pi, and ��∗) were acquired at 4200 Hz. For 
the measurement of the air flow rate a TESTO® 6446 flowmeter was used.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Air injection system a) system layout b) picture of the air regulation device installed in the 
electromechanic gallery c) injection holes at the discharge ring d) detailed picture of an injection hole.  

2.4.  Test procedure 
Air was injected at constant load �� from 0.65 to 1.0 of ��	���. For each load step the turbine regulator 
was switched off in order to keep the blade tilt angle β and the distributor position α unchanged. This 
feature was essential in order to detect the variation in efficiency as a drop in power generation.   
Air flow rates varied from ��∗ =	0.06 to 0.8‰, expressed as a fraction of the prototype flow rate at the 
best efficiency point	�
��. The test sequence can be listed as follows: 1) A small ��∗  of 0.01‰ was 
injected to drain water off the air injection device. 2) The desired ��∗  was established with the 
regulating valve arrangement. 3) Once a steady ��∗  is reached, all the signals were recorded during 
40s. 4) If the air tank pressure �
 was bigger than the minimum working pressure, point 2 was repeated 
with the following ��∗  step. Otherwise, valves were closed in order to allow the pressure recovery. 
This sequence was repeated until the test was completed.   

5 
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3.  Results 

3.1.  Injection pressure 
A rise of the injection pressure was observed as the air flow rate is increased (Fig. 5). For every load 
step, the pressure samples were fitted with a quadratic function (Eq.1). As the load and the specific 
energy increases, less injection pressure is needed for the same amount of air.  

 
Figure 5. Dimensionless air injection pressure �� , where ρ is the density of water and E is the specific 

hydraulic energy coefficient as a function of the air flow rate ��∗  for different loads condition. The 
grey lines correspond to quadratic regression for every load step. 

 

3.2.  Vibrations, pressure pulsation and sound emission.  
Fig.6 shows the variation of the magnitude of the dynamic variables in terms of the air injected ��∗  for 
every load step. The black curve represents the typical response in function of the load without air. 
The behavior is the same for all the cases, flat up at to a load of 0.93 ��	��� and then a strong increase 
until reach the maximum value for ��	���.  
Both accelerometers show a decrease in the magnitude of vibration when air is injected. The efficiency 
of the air injection for reducing vibration is greater at the discharge ring location than at the guide 
bearing, as can be seen comparing AC1 and AC2. For low loads, AC2 registers a strong drop of 
vibrations for a ��∗  smaller than 0.2‰. Higher amounts of air do not produce any further attenuation. 
As the load increases, the slope of the attenuation curve becomes more constant. Noise emission at the 
man-door, SN, shows a similar pattern of attenuation but the reduction of the noise level is more 
effective for low loads. At high loads there is a small rise of the noise level for ��∗  = 0.06‰. Then it is 
followed by a constant drop up to the maximum air flow rate. The pressure pulsation, SP, does not 
display a clear behavior for the maximum loads, 0.97 and 1.0 of ��	���. For lower loads, the shape of 
the attenuation curves is similar to that of vibrations. Table 1 summarized the ratio of mitigation for 
each variable.      
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Figure 6. Magnitude of the dynamic signals for E/EBEP = 0.804 a) standard deviation of AC1 b) 

standard deviation of AC2 c) Mean value of SN d) Peak to Peak amplitude of the pressure signal for 
the 97% percentile.  

 
 
Table 1. Mitigation ratio of dynamics variables and efficiency drop between no air condition and ��∗  = 

0.2‰ and 0.8‰. 

 
 
 
 
 
 
 
 

Eff. Drop*

AC1 [-] AC2 [-] SN [-] SP [-] AC1 [-] AC2 [-] SN [-] SP [-] [%]

0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ---

0.2 0.86 0.32 0.93 0.54 0.91 0.47 0.98 0.73 0.00

0.8 0.83 0.16 0.89 0.54 0.78 0.24 0.94 0.86 0.14

0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 ---

0.2 0.99 0.82 0.98 0.83 0.93 0.67 0.99 0.95 0.06

0.8 0.97 0.43 0.94 1.38 0.78 0.34 0.95 1.22 0.19

1.0

*The minimum efficiency drop measurable was 0.05% due to instrumentation sensitivity

P/Pmax  [-] Qa*[‰]
E/EBEP= 0.771 E/EBEP= 0.804

0.93
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4.  Discussion 

4.1.  Effect of air injection 
The dynamic magnitudes measured for the no-air condition are proportional to the load (Fig.6). This is 
linked with the development of blade tip cavitation, as has been observed in the physical model [10].  
For the same amount of air injected, mitigation was more effective at lower loads. This could be 
explained by the fact that the greater the amount of cavitation, the more air is needed to neutralize it. 
The same could be derived when comparing the effect of air evaluated under different head conditions, 
as higher air flow rates are needed for lower heads for comparable levels of mitigation to be achieved. 
That leads to bigger tilt angles required to get the same load at lower heads, for which the tip 
cavitation is more likely to develop. 
The most beneficial effect of air in reducing vibration was observed in the draft tube man door (AC2), 
as the effect of tip cavitation implosion is captured directly by the discharge ring section, where the 
sensor is located. On the other hand, the guide bearing accelerometer AC1 is not directly in contact 
with the source of vibration. The vibration then is transmitted through the rotating part up to the guide 
bearing.    

4.2.  Injection pressure 
Results suggest that the dimensionless injection pressure may be expressed as a function of the 
dynamic and static pressures at the injection points (first and third terms of the right-hand side of Eq. 
1, respectively) and the energy losses in the air conduit system (second term).  

  

 ��
�� = ��� + ���∗

� + � (1) 

Where ��  is expressed in bars, ρ=water density (kg/m3), E=specific hydraulic energy coefficient (J/kg), � =Flow 
Coefficient (-),	(�,	�,�)= dimensional regression coefficients, ��

∗  is expressed in ‰. 
 
The required injection pressure for a desired air flow rate ��∗  would be then a function of the operating 
point of the unit. Assuming that the flow coefficient � can be written as the ratio of the electric power 
Pe and the net head Hn, the absolute injection pressure can then be defined as a function of the 
operating point of the unit Pe and Hn and the air flow rate	��∗  to be injected (Eq. 2). Regression analysis 
of the measured data (Fig. 5) allows for the determination of the coefficients ��=0.0277	��=2.58 and 
��=3.24. This expression could be of practical use in the power plant for a permanent injection system, 
as Pe and Hn are parts of the permanent monitoring system of the unit.  
 

 �� = �� ���
��
 
�
+ ����∗

� + �� (2) 

Where  Pe is expressed in MW and Hn is expressed in m, (��,	�� ,��)= dimensionless regression coefficients (-). 

4.3.  Air injection mitigation model  
The potential energy contained in a cavitating flow is defined by Eq.3 [11] as a function of the cavity 
volume and the difference of the surrounding and vapor pressure. When the cavity collapses, this 
energy is released producing shock waves, micro jets and noise emission. The potential of erosion is 
then proportional to the amount of energy available for the collapse.  
Consequently, the magnitude of these dynamic variables will be greater in relation to the amount of 
available potential energy	�!, or which is the same thing, the cavitation volume "#�$ and the pressure 
gradient	%&'�( − &*+. Then, if we could control some of these two parameters, we would be able to 
mitigate the undesirable effects of cavitation. As shown by Mäkiharju et al. [2], the injection of a non-
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condensable gas on a partial cavity produces a decrease in the void fraction, meaning a reduction of 
"#�$. 

 �!~"#�$%&'�( − &$+ (3) 

 
Where �!= potential energy of the cavitating flow, "#�$= vapor volume, &'�(= Surrounding pressure, &$= 

vapor pressure.  
 
In addition, the minimum pressure in the tip vortex cavitating core could increase with the air 
entrance. Indeed, high speed visualization performed on the physical model [7,8] enabled to see that 
air travels from the injector to the tip vortex core merging into a unique gas volume.   
The alleged reduction of "#�$ and the increase of &'�( could explain the reduction of noise emission 
and vibration due to air injection. In Fig. 7, a model scheme summarizing the mitigation mechanism is 
shown. Further research is needed on this topic.  
 

 

 
 

Figure 7. Vibration and noise emission model due to tip cavitation (a) under no air and (b) with air 
injection. The reduction of the volume of the cavity might account for the attenuation of cavitation 

potential energy.  

5.  Conclusions 
In agreement with the results found on a physical scale model, air injection proved to be an effective 
method for the mitigation of tip blade cavitation in a Kaplan prototype turbine. The decrease in 
vibration level at the discharge ring was about 57-84%, depending on the load condition at the expense 
of a maximum efficiency drop of 0.2%. For an air flow rate smaller than 0.2‰, the drop in efficiency 
was found to be negligible. The attenuation observed is seen to be proportional to the air flow rate, in a 
range that goes from 0.06 up to 0.8‰, expressed as a proportion of the discharge at the best efficiency 
point. Noise emission had a similar behavior to that of vibration. However, pressure pulsation has 
showed some discrepancies at higher loads.   
An expression for injection pressure Pi was given as a function of the operating point of the unit (Hn, 
Pe) and the air flow rate	��∗ . According to it, the greater the load, the smaller the injection pressure, 
whereas the pressure Pi varies over a range from 0.85 up to 1.4 times the net head Hn. 
A conceptual model of the mitigation mechanism produced by the air injection was developed, 
according to which the potential energy of tip cavitation is reduced by the mixture with air. Further 
research is needed on this topic.  
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