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that depends on some weighted population size. We prove that our new quadrature
based method converges to second-order and we show the results of several numerical
simulations.
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1. Introduction

The mathematical theory of age-structured populations is quite well developed [10,11]. They play a major role in eco-
logical modeling, as well as in demography, epidemiology, cancer modeling, and other fields. Many models simplify the
mathematical analysis by assuming that the mortality rate—as well as all other modeling parameters—is bounded, automat-
ically leading to the possibility of immortality. Some more realistic models impose a maximum age that cannot be reached
and must require that the mortality rate become unbounded at that age. Lotka [15,16] and McKendrick [18] are credited
with the first age-structured model, a linear one that supports exponential solutions, just as the unstructured Malthus [17]
model. A nonlinear form of that model was first proposed by Gurtin and MacCamy [9] by making the fertility and mortality
rates dependent on the total population size, that is the integral of the age density.

Numerical methods to approximate the solution of such population models have been proposed and analyzed during the
past twenty-five years. For an excellent review of these methods see [1]. Two of the main objectives driving the need for
numerical methods are, first, the need to make projections about population growth for the future, usually for periods of
10–50 years. Secondly, there is the theoretical interest in long-term simulations for the purpose of analyzing trends under
different scenarios. This is an important aspect of population models in theoretical biology. Some examples of numerical
studies of structured population dynamics are found, for example, in [2–6,8,19].

For the use of real life data we have to limit ourselves to low regularity in the data, thus limiting the practicality of the
numerical methods to second-order requiring just one continuous derivative for the coefficients. For long-term simulations
higher-order methods would be more desirable and, therefore, second-order methods are a good compromise between
performance and regularity demands. The first to point out that standard numerical methods based on uniform meshes
degenerate and do not converge near the age of unbounded mortality were Iannelli and Milner [12].
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Kim and Kwon [13] introduced a numerical method that reaches its optimal order of convergence when the tail of
the mortality function has some specific analytic form. Even though the partial differential equations in the model can
be readily integrated along the characteristics as ordinary differential equations—thus providing natural numerical methods
that consist of approximating that integral representation—very few numerical methods are based on that explicit analytic
representation.

A linear model might be sufficient for short term population projections in which the use of finite maximum age can
result in quantitatively better projections for advanced ages [7]. However, in order to provide more real-life applicability to
the quantitative and qualitative study of population dynamics, we must consider a nonlinear population model with finite
maximum age. Only these allow for the numerical study of the stability of steady states in the absence of theoretical results,
as well as the possible appearance of bifurcations. Regularity is not a concern for such studies.

The new method we propose and analyze is based on quadratures of the integrals that appear in the explicit represen-
tation of solutions obtained by integration along characteristics. It converges at its optimal order—second—for more general
tails that include some for which other methods in the literature fail. In particular, our method is applicable to families of
mortality functions that include those most often used in population modeling.

The paper is organized as follows: Section 2 is devoted to a detailed description of the model. In Section 4 we present
the convergence analysis of the numerical method introduced in Section 3. Finally, the fifth Section is devoted to numerical
simulations and conclusions.

2. The model

We consider the problem of modeling the evolution of the age density of a population given by the following classical
system:

ut + ua = −(
m(a) + μ

(
a, Iμ(t), t

))
u, 0 < a < a†, t > 0, (2.1)

u(0, t) =
a†∫

0

α
(
a, Iα(t), t

)
u(a, t)da, t > 0, (2.2)

u(a,0) = u0(a), 0 � a � a†, (2.3)

Is(t) =
a†∫

0

γs(a)u(a, t)da, t > 0, s = μ,α, (2.4)

where the independent variables a and t represent, respectively, age and time. The function u(·, t) is the age density of
the population at time t and the vital functions are given by the age-specific mortality rate (m(·) + μ(·, Iμ(t), t)) and
the age-specific fertility rate (α(·, Iα(t), t)). For biological reasons, the latter will always be assumed to be bounded in
all its arguments by a constant that we shall simply denote as ‖α‖∞ . We consider the mortality rate given in separable
form consisting of two terms, an intrinsic mortality m(a)—that is unbounded to take into account a maximum age a†—and
a bounded mortality that, as the fertility rate, includes seasonality (through the dependence on the time) and resource com-
petition (through the dependence on the non-local functionals Is(t)). Finally, u0(·) denotes the initial age distribution that,
for biological reasons, will be assumed nonnegative and integrable. A derivation, analysis of well-posedness, and asymptotic
behavior of solutions can be found, for example, in [10].

Note that the initial size of the population is P0 = ∫ a†
0 u0(a)da and, at any time t � 0, the population size is certainly

bounded by P (t) = P0et‖α‖∞ . We shall use this bound P below in order to describe the regularity assumptions on the
coefficients that we need for the solution to be smooth enough that our numerical method converge at second order.

In this paper we introduce a second order numerical method to approximate the solution of this nonlinear model and
we also carry out its convergence analysis. Throughout the paper we assume the following regularity conditions on the data
functions (ε̄ > 0 is a fixed positive constant):

(H1) γμ,γα ∈ C 2([0,a†]);

(H2) m ∈ C 2([0,a†)), is nonnegative and
∫ a†

0 m(σ )dσ = +∞;
(H3) μ ∈ C 2([0,a†] × [−ε̄, P (T )‖γμ‖∞ + ε̄] × [0, T ]) is nonnegative;
(H4) α ∈ C 2([0,a†] × [−ε̄, P (T )‖γα‖∞ + ε̄] × [0, T ]) is nonnegative;

(H5) u0 ∈ C 2([0,a†]) satisfies the zero-oder compatibility condition u0(0) = ∫ a†
0 α(a, Iα(0),0)u0(a)da, the corresponding

first- and second-order relations to match to second order the boundary and initial conditions (2.2)–(2.3), as well as
necessary decay conditions at a†, including

lim
a→a†

u0(a)exp

( a∫
0

m(s)ds

)
< +∞.
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Then the solution of problem (2.1)–(2.4) satisfies

u ∈ C 2([0,a†) × [0, T ]), u(a, t) � 0, for a ∈ [0,a†], t � 0. (2.5)

The regularity part of (2.5) can be derived along the lines of the C 1-results of Iannelli [10] but, as stated here, it is not in
the literature and its proof escapes the scope of this article.

3. The numerical method

The numerical method that we propose integrates the model along the characteristic lines a − t = c, c constant, where

d

dt
u(t + c, t) = −(

m(t + c) + μ
(
t + c, Iμ(t), t

))
u(t + c, t). (3.1)

Therefore, the integral representation of the solutions of (3.1) along the characteristics is given by the following relation: for
each ā, with 0 < ā < a†, and h > 0 such that ā + h < a†,

u(ā + h, t0 + h) = u(ā, t0)exp

(
−

h∫
0

[
m(ā + τ ) + μ

(
ā + τ , Iμ(t0 + τ ), t0 + τ

)]
dτ

)
. (3.2)

The initial difficulty to produce a numerical method for a problem like (2.1)–(2.4) is that the intrinsic mortality is
unbounded. Therefore, we consider an intermediate value A∗ ∈ (0,a†) such that m is bounded in [0, A∗], and we know the
function f (a) = ∫ a

A∗ m(σ )dσ , A∗ � a � a†, and f (a†) = +∞ [7,13]. Note that, in order to model the dynamics of a specific
population, the parameters A∗ and a†, and the function μ should be determined from the field data [7].

The numerical method we propose consists of the discretization of (3.2). First, we introduce an age grid on [0,a†] but,
taking into account the value A∗ that we want to keep identified, we introduce a positive integer J∗ , and we define the
step size h = A∗/ J∗ . Then, the total number of grid points is given by J = [a†/h], where [·] denotes the integer part and the
nodes of the uniform partition of the interval [0,a†] are a j = jh, 0 � j � J (note that a J∗ = A∗ and a J � a†). We shall also
use the notation a j+ 1

2
= a j + h

2 = ( j + 1
2 )h to denote the “midpoint nodes”. We will integrate the problem in a fixed time

interval [0, T ], so we define the discrete time levels, tn = nh, 0 � n � N , where N = [T /h], as well as the intermediate time
levels tn+ 1

2
= tn + h

2 = (n + 1
2 )h.

The notation Un
j will represent the numerical approximation to u(a j, tn), 0 � j � J , 0 � n � N (the subscript j refers

to the age grid point a j and the superscript n to the time level tn). We also denote these approximations in vector form:
Un = [Un

0, Un
1, . . . , Un

J ], 0 � n � N .
We approximate now the directional derivatives (3.1) along characteristics using the explicit formula (3.2), where the

evaluation of the right-hand side is performed by approximating the integral therein using the composite midpoint rule, thus
providing second-order accuracy. The integrals that describe births are approximated by a second-order modified composite
trapezoidal rule.

Given approximations of the initial age density on the age grid,

U0 = [
U 0

0, U 0
1, . . . , U 0

J

]
(which could be taken as the grid restrictions of the initial density U 0

j = u0(a j), 0 � j � J ) the numerical method is defined

by the following recursion that provides the numerical approximation at the time level n + 1, (Un+1), from that at the time
level n, (Un), 0 � n � N − 1:

Un+1
j+1 = Un

j exp
(−h

[
m(a j+ 1

2
) + μ

(
a j+ 1

2
, Q∗

h

(
γ μUn+ 1

2
)
, tn+ 1

2

)])
, 0 � j � J∗ − 1, (3.3)

U n+1
j+1 = Un

j exp
(

f (a j) − f (a j+1)
)

exp
(−hμ

(
a j+ 1

2
, Q∗

h

(
γ μUn+ 1

2
)
, tn+ 1

2

))
, J∗ � j � J − 1, (3.4)

U n+1
0 = Qh

(
α

(
Un+1)Un+1), (3.5)

0 � n � N − 1, where α(Un) j = α(a j, Qh(γ αUn), tn), 0 � j � J , and the values at the half time-step, Un+ 1
2 = [Un+ 1

2
1
2

, U
n+ 1

2
3
2

,

. . . , U
n+ 1

2

J− 1
2
], are computed by means of

U
n+ 1

2

j+ 1
2

= Un
j exp

(
−h

2

[
m(a j) + μ

(
a j, Qh

(
γ μUn), tn

)])
, 0 � j � J∗ − 1, (3.6)

U
n+ 1

2

j+ 1 = Un
j exp

(
f (a j) − f (a j+1/2)

)
exp

(
−h

μ
(
a j, Qh

(
γ μUn), tn

))
, J∗ � j � J − 1. (3.7)
2 2
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The notations Qh(V) and Q∗
h(V) represent, respectively, the second-order composite half open quadrature and midpoint

rules to approximate an integral over the interval [0,a†] given by

Qh(V) = hV 1 +
J−1∑
j=1

h

2
(V j + V j+1), V = (V 0, V 1, . . . , V J ), (3.8)

Q∗
h(V) =

J−1∑
j=0

hV j+ 1
2
, V = (V 1

2
, . . . , V J− 1

2
). (3.9)

Furthermore, γ sUn , 0 � n � N , γ sUn+ 1
2 , 0 � n � N − 1, s = μ, α, and α(Un)Un , 0 � n � N , denote the componentwise

product of the corresponding vectors. Note that we use two different quadrature rules because, for each time step, we
have two different nodes sets, one for levels tn and other for intermediate levels tn+ 1

2
. It is important to notice that the

numerical method in (3.3)–(3.5) is explicit which represents a great advantage in its implementation as compared to an
implicit formulation, this is the reason because we use a modification of the composite trapezoidal quadrature rule.

4. Convergence analysis

We begin the analysis of the numerical method that we have described in Section 3. Convergence will be obtained by
means of consistency and nonlinear stability. First, we rewrite the numerical method into the discretization framework
developed by López-Marcos et al. [14]. From now on, C will denote a positive constant which is independent of h, n
(0 � n � N) and j (0 � j � J ); C has possibly different values in different places.

We assume that the age discretization parameter h takes values in the set H = {A∗/ J∗, J∗ ∈ N} and J = [a†/h]. In
addition, we set N = [T /h]. For each h ∈ H , we define the space

Xh = (
R

J+1)N+1
,

where R
J+1 is used to consider the approximations to the theoretical solution on the grid nodes, 0 � n � N . We also

introduce the space

Yh = R
J+1 × R

N × (
R

J )N
,

where we consider the residuals which arise from the initial approximations (first term in the product), from the approxi-
mation to the solution at the boundary node (second term), and from the approximations to the solution at the other grid
nodes, for every time step (except the first one). We note that the spaces, Xh and Yh , have the same dimension.

In order to measure the size of the errors, we define

‖a‖∞,p = max
1� j�p

|a j|, a = (a1,a2, . . . ,ap) ∈ R
p, ‖V‖1, J+1 =

J∑
j=0

h|V j|, V ∈ R
J+1,

and B∞,p(a, r) the open ball with center a and radius r given by norm ‖ · ‖∞,p . Now, we endow the spaces Xh and Yh with
the following norms. If (V0,V1, . . . ,VN ) ∈ Xh , then∥∥(

V0,V1, . . . ,VN)∥∥
Xh

= max
0�n�N

∥∥Vn
∥∥∞, J+1.

On the other hand, if (P0,P0,P1,P2, . . . ,PN ) ∈ Yh , then

∥∥(
P0,P0,P1,P2, . . . ,PN)∥∥

Yh
= ∥∥P0

∥∥∞, J+1 + ‖P0‖∞,N +
N∑

n=1

h
∥∥Pn

∥∥∞, J .

Let u represent the solution of (2.1)–(2.4). For each h ∈ H we define

uh = (
u0,u1,u2, . . . ,uN)

, un = (
un

0, un
1, . . . , un

J

) ∈ R
J+1,

un
j = u(a j, tn), 0 � j � J , 0 � n � N.

For ε > 0 denote by B Xh (uh, ε) ⊂ Xh the open ball with center uh and radius ε. Next, we introduce the mapping

Φh : B Xh (uh, ε) → Yh,

Φh
(
V0,V1, . . . ,VN) = (

P0,P0,P1, . . . ,PN)
, (4.1)

defined by the following equations:
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P0 = V0 − U0 ∈ R
J+1, (4.2)

Pn
0 = V n

0 − Qh
(
α

(
Vn)Vn), 1 � n � N, (4.3)

and for 0 � n � N − 1,

Pn+1
j+1 =

V n+1
j+1 − V n

j exp(−h[m(a j+ 1
2
) + μ(a j+ 1

2
, Q∗

h(γ μVn+ 1
2 ), tn+ 1

2
)])

h
, 0 � j � J∗ − 1, (4.4)

Pn+1
j+1 =

V n+1
j+1 − V n

j exp ( f (a j) − f (a j+1)) exp(−hμ(a j+ 1
2
, Q∗

h(γ μVn+ 1
2 ), tn+ 1

2
))

h
, J∗ � j � J − 1, (4.5)

where

V
n+ 1

2

j+ 1
2

= V n
j exp

(
−h

2

[
m(a j) + μ

(
a j, Qh

(
γ μVn), tn

)])
, 0 � j � J∗ − 1, (4.6)

V
n+ 1

2

j+ 1
2

= V n
j exp

(
f (a j) − f (a j+1/2)

)
exp

(
−h

2
μ

(
a j, Qh

(
γ μVn), tn

))
, J∗ � j � J − 1, (4.7)

and the vector U0 represents an approximation of the analytical solution at t = 0, and we have used the same notation as
in Section 3.

It is clear that (U0,U1, . . . ,UN ) ∈ Xh is a solution of (3.3)–(3.5) if and only if

Φh
(
U0,U1, . . . ,UN) = 0. (4.8)

We begin with the following auxiliary result.

Proposition 1. Assume hypotheses (H1)–(H4). Let be Vn,Wn ∈ B∞, J+1(un, ε), 1 � n � N − 1. Then, for h sufficiently small, the
following hold:∣∣Qh

(
γ φVn) − Qh

(
γ φWn)∣∣ � C

∥∥Vn − Wn
∥∥

1, 1 � n � N, (4.9)∣∣Qh
(
α

(
Vn)Vn) − Qh

(
α

(
Wn)Wn)∣∣ � C

∥∥Vn − Wn
∥∥

1, 1 � n � N, (4.10)∣∣V
n+ 1

2

j+ 1
2

− W
n+ 1

2

j+ 1
2

∣∣ �
∣∣V n

j − W n
j

∣∣ + Ch
∥∥Vn − Wn

∥∥
1, J+1, 0 � j � J − 1, (4.11)

∣∣Q∗
h

(
γ φVn+ 1

2
) − Q∗

h

(
γ φWn+ 1

2
)∣∣ � C

∥∥Vn − Wn
∥∥

1, J+1, (4.12)

for φ = μ,α.

Proof. Inequalities (4.12)–(4.10) follow from (3.8) and hypothesis (H1). Next, from (4.6) we have that, for 0 � j � J∗ − 1,

V
n+ 1

2

j+ 1
2

− W
n+ 1

2

j+ 1
2

= (
V n

j − W n
j

)
exp

(
−h

2

[
m(a j) + μ

(
a j, Qh

(
γ μVn), tn

)])

+ W n
j exp

(
−h

2
m(a j)

)[
exp

(
−h

2
μ

(
a j, Qh

(
γ μVn), tn

)) − exp

(
−h

2
μ

(
a j, Qh

(
γ μWn), tn

))]
.

Also, using (4.7), we have for J∗ � j � J − 1,

V
n+ 1

2

j+ 1
2

− W
n+ 1

2

j+ 1
2

= (
V n

j − W n
j

)
exp

(
f (a j) − f (a j+1/2)

)
exp

(
−h

2
μ

(
a j, Qh

(
γ μVn), tn

))

+ W n
j exp

(
f (a j) − f (a j+1/2)

)[
exp

(
−h

2
μ

(
a j, Qh

(
γ μVn), tn

))

− exp

(
−h

2
μ

(
a j, Qh

(
γ μWn), tn

))]
.

Now, the regularity hypotheses (H1)–(H4), inequality (4.9) and the relation ‖Wn‖∞, J+1 � C yield, for 0 � j � J − 1, 0 � n �
N − 1,

∣∣V
n+ 1

2

j+ 1 − W
n+ 1

2

j+ 1

∣∣ �
∣∣V n

j − W n
j

∣∣ + Ch
∣∣Qh

(
γ μVn) − Qh

(
γ μWn)∣∣ �

∣∣V n
j − W n

j

∣∣ + Ch
∥∥Vn − Wn

∥∥
1, J+1.
2 2
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Finally, using (3.9), the inequality (4.11) and the hypothesis (H1), we see that, for 1 � n � N − 1,∣∣Q∗
h

(
γ φVn+ 1

2
) − Q∗

h

(
γ φWn+ 1

2
)∣∣ = ∣∣Q∗

h

(
γ φ

[
Vn+ 1

2 − Wn+ 1
2
])∣∣

� C
J−1∑
i=0

h
∣∣V

n+ 1
2

i+ 1
2

− W
n+ 1

2

i+ 1
2

∣∣ � C
J−1∑
i=0

h
(∣∣V n

i − W n
i

∣∣ + Ch
∥∥Vn − Wn

∥∥
1, J+1

)
� C

∥∥Vn − Wn
∥∥

1, J+1,

as desired. �
The next result shows that operator defined by (4.1) is well defined.

Proposition 2. Assume that hypotheses (H1)–(H4) hold. If(
V0,V1, . . . ,VN) ∈ B Xh (uh, ε),

where ε > 0 is a fixed positive constant. Then, for h sufficiently small,

Qh
(
γ φVn) ∈ [−ε̄, P(T )‖γφ‖∞ + ε̄

]
, 0 � n � N, φ = μ,α, (4.13)

and

Q∗
h

(
γ φVn+ 1

2
) ∈ [−ε̄, P(T )‖γφ‖∞ + ε̄

]
, 0 � n � N − 1, φ = μ,α. (4.14)

Proof. Definition (3.8), hypotheses (H1)–(H4), the regularity result (2.5), the inequality (4.9), and the fact that Vn is bounded,
allow us to obtain, for 0 � n � N and h sufficiently small,∣∣Qh

(
γ φVn) − Iφ(tn)

∣∣ �
∣∣Qh

(
γ φVn) − Qh

(
γ φun)∣∣ + ∣∣Qh

(
γ φun) − Iφ(tn)

∣∣ � C
∥∥Vn − un

∥∥
1, J+1 + O (h). (4.15)

Therefore, (4.13) holds. On the other hand, we can see from (3.9), hypotheses (H1)–(H4), the regularity result (2.5), inequal-
ity (4.12), the property

∣∣u(a j+ 1
2
, tn+ 1

2
) − u

n+ 1
2

j+ 1
2

∣∣ = O (h), 0 � j � J − 1, (4.16)

and the boundedness of Vn , that for 0 � n � N − 1,∣∣Q∗
h

(
γ φVn+ 1

2
) − Iφ(tn+ 1

2
)
∣∣ �

∣∣Q∗
h

(
γ φVn+ 1

2
) − Q∗

h

(
γ φun+ 1

2
)∣∣ + ∣∣Q∗

h

(
γ φun+ 1

2
) − Iφ(tn+ 1

2
)
∣∣

� C
∥∥Vn − un

∥∥
1, J+1 + O (h),

for h sufficiently small, where un+ 1
2 is defined in (4.6)–(4.7). Therefore, (4.14) holds. �

Now we define the local discretization error as

lh = Φh(uh) ∈ Yh,

and we say that the discretization (4.1) is consistent if

lim
h→0

∥∥Φh(uh)
∥∥

Yh
= lim

h→0
‖lh‖Yh = 0.

The next theorem establishes the consistency of the numerical method defined by (3.3)–(3.5).

Theorem 3. Assume that hypotheses (H1)–(H4) hold. Then, for h sufficiently small, the local discretization error satisfies,∥∥Φh(uh)
∥∥

Yh
= ∥∥u0 − U0

∥∥∞, J+1 + O
(
h2). (4.17)

Proof. Let us denote Φh(uh) = (L0,L0,L1,L2, . . . ,LN ). First we set the bounds for Ln+1, 0 � n � N − 1. Using (3.2) and (4.4),
the regularity hypotheses (H1)–(H4) and result (2.5), and the standard error bound of the mid-point quadrature rule, we
have for 0 � j � J∗ − 1,
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∣∣Ln+1
j+1

∣∣ �
|un

j |
h

{∣∣∣∣∣exp

(
−

h∫
0

[
m(a j + σ) + μ

(
a j + σ , Iμ(tn + σ), tn + σ

)]
dσ

)

− exp
(−h

[
m(a j+ 1

2
) + μ

(
a j+ 1

2
, Iμ(tn+ 1

2
), tn+ 1

2

)])∣∣∣∣∣ + ∣∣exp
(−h

[
m(a j+ 1

2
) + μ

(
a j+ 1

2
, Iμ(tn+ 1

2
), tn+ 1

2

)])

− exp
(−h

[
m(a j+ 1

2
) + μ

(
a j+ 1

2
, Q∗

h

(
γ μun+ 1

2
)
, tn+ 1

2

)])∣∣}

� C
{

h2 + ∣∣μ(
a j+ 1

2
, Iμ(tn+ 1

2
), tn+ 1

2

) − μ
(
a j+ 1

2
, Q∗

h

(
γ μun+ 1

2
)
, tn+ 1

2

)∣∣}
� C

{
h2 + ∣∣Iμ(tn+ 1

2
) − Q∗

h

(
γ μun+ 1

2
)∣∣}, (4.18)

where un+ 1
2 are computed by means of (4.6)–(4.7) and, therefore, they are not the values of the solution at tn+ 1

2
. Following

an analogous argument we can derive, for J∗ � j � J − 1,∣∣Ln+1
j+1

∣∣ � C
{

h2 + ∣∣Iμ(tn+ 1
2
) − Q∗

h

(
γ μun+ 1

2
)∣∣}. (4.19)

Also, from the convergence properties of the quadrature rules employed, we obtain the following bounds:∣∣∣∣u(a j+ 1
2
, tn+ 1

2
) − un

j exp

(
−h

2

[
m(a j) + μ

(
a j, Qh

(
γ μun), tn

)])∣∣∣∣ � Ch2, 0 � j � J∗ − 1, (4.20)∣∣∣∣u(a j+ 1
2
, tn+ 1

2
) − un

j e
[ f (a j)− f (a j+1/2)] exp

(
−h

2
μ

(
a j, Qh

(
γ μun), tn

))∣∣∣∣ � Ch2, J∗ � j � J − 1, (4.21)

that lead to the relation∣∣Iμ(tn+ 1
2
) − Q∗

h

(
γ μun+ 1

2
)∣∣ � Ch2, (4.22)

which can be substituted in (4.18) and (4.19) to see that∣∣Ln+1
j+1

∣∣ � Ch2, 0 � j � J − 1. (4.23)

Now we consider bounding L0. Using (4.3), the regularity hypotheses (H1)–(H4) and result (2.5), the standard error
bounds for the quadrature rule, and similar arguments to those employed above, we have for 1 � n � N ,

∣∣Ln
0

∣∣ �
∣∣∣∣∣

a†∫
0

α
(
a, Iα(tn), tn

)
u(a, tn)da − Qh

(
α

(
un)un)∣∣∣∣∣ � Ch2 + ∣∣Iα(tn) − Qh

(
γ αun)∣∣ � Ch2. (4.24)

This completes the proof of (4.17). �
Another notion that plays an important role in the analysis of the numerical method is that of stability with h-dependent

thresholds. For h ∈ H , let Mh > 0 be a real number (the stability threshold); we say that the discretization (4.1) is stable for u
restricted to the thresholds Mh , if there exist two positive constants h0 and S (the stability constant) such that, for any h ∈ H
with h � h0, the open ball B Xh (uh, Mh) is contained in the domain of Φh and, for all V, Wh in that ball,

‖Vh − Wh‖ � S
∥∥Φh(Vh) − Φh(Wh)

∥∥.

Next, we introduce a theorem that establishes the stability of the discretization defined by Eqs. (3.3)–(3.5).

Theorem 4. Assume that hypotheses (H1)–(H4) hold and let ε > 0 be a fixed constant. Then, the discretization (3.3)–(3.5) is stable for
uh with thresholds Mh = ε.

Proof. Let (V0,V1, . . . ,VN ), (W0,W1, . . . ,WN ) ∈ B Xh (uh, Mh) and set

En = Vn − Wn ∈ R
J+1, 0 � n � N,

Φh
(
V0,V1, . . . ,VN) = (

P0,P0,P1,P2, . . . ,PN)
,

Φh
(
W0,W1, . . . ,WN) = (

R0,R0,R1,R2, . . . ,RN)
.
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From (4.4) we have, for 0 � j � J∗ − 1,

En+1
j+1 = En

j exp
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j+1

)
, (4.25)

and from (4.5) we have, for J∗ � j � J − 1,

En+1
j+1 = En

j e
[ f (a j)− f (a j+1)] exp

(−hμ
(
a j+ 1

2
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(
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(−hμ
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(
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− exp
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(
γ μWn+ 1

2
)
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2

))] + h
(

Pn+1
j+1 − Rn+1

j+1

)
. (4.26)

The regularity result (2.5) and hypotheses (H1)–(H4), formulae (4.25)–(4.26), inequality (4.12), and ‖W‖∞, J+1 � C imply
that, for 0 � j � J − 1,∣∣En+1

j+1

∣∣ �
∣∣En

j

∣∣ + Ch
∣∣Q∗

h

(
γ μVn+ 1

2
) − Q∗

h

(
γ μWn+ 1

2
)∣∣ + h
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j+1 − Rn+1

j+1

∣∣
�

∣∣En
j

∣∣ + Ch
∥∥En

∥∥
1, J+1 + h

∣∣Pn+1
j+1 − Rn+1

j+1

∣∣. (4.27)

Thus, when N � n > j � 1, from (4.27) we have

∣∣En
j

∣∣ �
∣∣En− j

0

∣∣ + Ch
j∑

l=1

∥∥En−l
∥∥

1, J+1 + h
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l=0

∣∣Pn−l
j−l − Rn−l

j−l

∣∣ �
∣∣En− j

0

∣∣ + Ch
n−1∑
l=0

∥∥El
∥∥

1, J+1 + h
n∑

l=1

∥∥Pl − Rl
∥∥∞, J . (4.28)

On the other hand, when j > n � 1, from (4.27) we obtain

∣∣En
j

∣∣ �
∣∣E0

j−n

∣∣ + Ch
n∑

l=1

∥∥En−l
∥∥

1, J+1 + h
n−1∑
l=0

∣∣Pn−l
j−l − Rn−l

j−l

∣∣ �
∣∣E0

n− j

∣∣ + Ch
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∥∥El
∥∥

1, J+1 + h
n∑

l=1

∥∥Pl − Rl
∥∥∞, J . (4.29)

Now, by (4.3)

En
0 = Qh

(
α

(
Vn)Vn) − Qh

(
α

(
Wn)Wn) + (

Pn
0 − Rn

0

)
= Qh

(
α

(
Vn)En) + Qh

([
α

(
Vn) − α

(
Wn)]Wn) + (

Pn
0 − Rn

0

)
. (4.30)

Also, using relation (2.5), hypotheses (H1)–(H4), inequalities (4.9) and (4.10), and ‖Wn‖∞, J+1 � C , we have∣∣En
0

∣∣ �
∥∥En
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1, J+1 + C

∣∣Qh
(
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(
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∣∣. (4.31)

Next, multiplying |En
j | by h and summing on j, 0 � j � J , from (4.28), (4.29), and (4.31) we have, for 1 � n � N ,
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Using the discrete Gronwall lemma, it follows that

∥∥En
∥∥

1, J+1 � C

(∥∥E0
∥∥

1, J+1 + ‖P0 − R0‖∞,N + h
n∑

l=1

∥∥Pl − Rl
∥∥∞, J

)
. (4.32)

Then, we substitute (4.32) in (4.28) and (4.31) to conclude the proof. �
Now, we define the global discretization error as

eh = uh − Uh ∈ Xh.

We say that the discretization (4.1) is convergent if there exists h0 > 0 such that, for each h ∈ H with h � h0, (4.8) has a
solution Uh for which

lim
h→0

‖uh − Uh‖Xh = lim
h→0

‖eh‖Xh = 0.

To conclude our convergence analysis we shall use the following result from the general discretization framework introduced
by López-Marcos et al. [14].

Theorem 5. Assume that (4.1) is consistent and stable with thresholds Mh. If Φh is continuous in B(uh, Mh) and ‖lh‖Yh = o(Mh) as
h → 0, then for h sufficiently small,

(i) the discrete equations (4.8) possess a unique solution in B(uh, Mh);
(ii) the solutions converge and ‖eh‖Xh = O (‖lh‖Yh ).

Finally, we state the theorem that establishes the convergence of our numerical method defined by Eqs. (3.3)–(3.5).

Theorem 6. Assume that hypotheses (H1)–(H4) hold. Then, for h sufficiently small, the numerical method defined by (3.3)–(3.5) has a
unique solution Uh ∈ B Xh (uh, M) and

‖Uh − uh‖Xh � C
[∥∥u0 − U0

∥∥∞ + O
(
h2)].

The proof of Theorem 6 is immediate from the consistency—Theorem 3, the stability—Theorem 4, and Theorem 5.

5. Numerical results and conclusions

We have carried out several numerical experiments using the algorithm defined in Section 3. We considered different
test problems presenting meaningful nonlinearities that appear in the literature [13]. The numerical integration for each
numerical experiment was carried out over the time interval [0,1]. In all the simulations we used the parameter values
a† = 1, A∗ = 0.9.

Problem 1. This is one of the examples present in [13], using the fertility and mortality rates α(a, z, t) = 4, m(a) = 1
1−a

and μ(a, z, t) = z. The weight functions are taken as γμ ≡ γα ≡ 1, and we consider as initial age density the function
u0(a) = 4(1 − a)e−λa , where λ = 2.5569290855. Problem (2.1)–(2.4) then has the following solution,

u(a, t) = 4(1 − a)e−λa λ

(λ − 1)e−λt + 1
.

Problem 2. We take now m(a) = 0.5
1−a and the other functions as in Problem 1. Problem (2.1)–(2.4) now has the following

solution,

u(a, t) = 4
√

1 − ae−λa λ

(λ − 1)e−λt + 1
,

where λ = 3.22540174092.

Problem 3. In this case, we chose μ(a, z, t) = z2, the other functions as in Problem 2. The solution to problem (2.1)–(2.4) is
then given by

u(a, t) = 4
√

1 − ae−λa

√
λ

(λ − 1)e−2λt + 1
.
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Table 1
Errors and convergence order for Problem 1.

k max0�n�N |Qh(Un) − P (tn)| Order max0�n�N,0� j� J |u(a j , tn) − U n
j | Order

1.25000E−02 6.164114E−03 2.465645E−02
6.25000E−03 1.561714E−03 1.98 6.246857E−03 1.98
3.12500E−03 3.928375E−04 1.99 1.571350E−03 1.99
1.56250E−03 9.849879E−05 2.00 3.939952E−04 2.00
7.81250E−04 2.466012E−05 2.00 9.864050E−05 2.00
3.90625E−04 6.169412E−06 2.00 2.467765E−05 2.00

Table 2
Errors and convergence order for Problem 2.

k max0�n�N |Qh(Un) − P (tn)| Order max0�n�N,0� j� J |u(a j , tn) − U n
j | Order

1.25000E−02 7.745942E−03 3.098377E−02
6.25000E−03 1.998691E−03 1.95 7.994764E−03 1.95
3.12500E−03 5.156830E−04 1.95 2.062732E−03 1.95
1.56250E−03 1.334500E−04 1.95 5.337998E−04 1.95
7.81250E−04 3.438362E−05 1.96 1.375345E−04 1.96
3.90625E−04 8.441683E−06 2.03 3.376673E−05 2.03

Table 3
Errors and convergence order for Problem 3.

k max0�n�N |Qh(Un) − P (tn)| Order max0�n�N,0� j� J |u(a j , tn) − U n
j | Order

1.25000E−02 3.417214E−03 1.366886E−02
6.25000E−03 8.738994E−04 1.97 3.495597E−03 1.97
3.12500E−03 2.243750E−04 1.96 8.974998E−04 1.96
1.56250E−03 5.794316E−05 1.95 2.317727E−04 1.95
7.81250E−04 1.497745E−05 1.95 5.990980E−05 1.95
3.90625E−04 3.764917E−06 1.99 1.505967E−05 1.99

Since we know the exact solution for each of these problems, we can show numerically that our method is second order
accurate by means of error tables. In each table the second column shows the global error for the total population computed
as follows,

eh = max
0�n�N

∣∣Qh
(
Un) − P (tn)

∣∣.
The fourth column represents the global error for the age density of the population computed using the formula

eh = max
0�n�N,0� j� J

∣∣u(a j, tn) − Un
j

∣∣.
The third and fifth columns display the experimental order of convergence of the method, s, computed as

s = log(e2h/eh)

log(2)
,

using the values of the second and forth column, respectively. Each row of Tables 1–3 corresponds to different value of the
discretization parameter.

We have described a new numerical method to approximate solutions of the initial-boundary value problem for a non-
linear, age-structured population model with finite maximum age. The method is based on quadratures of the integrals
resulting from the explicit integration of the differential equation in the model along characteristics. It is biologically rele-
vant because of its wide applicability to both short- and long-term projections.

We have proved the second-order convergence of the method provided the analytical solution is sufficiently regular. This
order of convergence seems like a good compromise between efficiency for long time simulations and regularity constraints
on the coefficient functions. When the required compatibility condition between initial age density and births is not satis-
fied, two types of singularities may arise: a jump discontinuity in the first derivative, or a jump discontinuity in the density
function itself along the characteristic 0 � t = a � a+ . The former leads to no loss in the order of convergence since the
composite quadratures used are local and always utilize the point of singularity. In the latter case the numerical method
can be modified by considering an open quadrature rule over the two affected subintervals [6]. Alternatively, a double value
for the solution can be considered on the nodes 0 � tn = an � a+ and still use the trapezoidal rule as in [8], though the
convergence analysis becomes more tedious in such case.

The implementation of the method is very straightforward since it is explicit and uses fractional time steps in order
to avoid iterations on the nonlinearities. The results in Tables 1–3 above clearly confirm the theoretical second order of
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convergence. The decrease of this order that would result from lack of regularity actually provides information about the
regularity of the density being approximated, which could contribute to questioning whether the model chosen and/or the
measured initial data are realistic.

We point out that the results for Problems 2 and 3 are novel because, as indicated in [12,13], the numerical methods
that have been previously proposed to approximate the solution of this model do not converge at their optimal order for
mortality functions m(a) = c

1−a , c < 1, such as the one we chose for these problems.
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