463 research outputs found
A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds
The Newton iteration is a popular method for minimising a cost function on
Euclidean space. Various generalisations to cost functions defined on manifolds
appear in the literature. In each case, the convergence rate of the generalised
Newton iteration needed establishing from first principles. The present paper
presents a framework for generalising iterative methods from Euclidean space to
manifolds that ensures local convergence rates are preserved. It applies to any
(memoryless) iterative method computing a coordinate independent property of a
function (such as a zero or a local minimum). All possible Newton methods on
manifolds are believed to come under this framework. Changes of coordinates,
and not any Riemannian structure, are shown to play a natural role in lifting
the Newton method to a manifold. The framework also gives new insight into the
design of Newton methods in general.Comment: 36 page
Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions
Earth-sized planets around nearby stars are being detected for the first time
by ground-based radial velocity and space-based transit surveys. This milestone
is opening the path towards the definition of missions able to directly detect
the light from these planets, with the identification of bio-signatures as one
of the main objectives. In that respect, both ESA and NASA have identified
nulling interferometry as one of the most promising techniques. The ability to
study distant planets will however depend on exozodiacal dust clouds
surrounding the target stars. In this paper, we assess the impact of
exozodiacal dust clouds on the performance of an infrared nulling
interferometer in the Emma X-array configuration. For the nominal mission
architecture with 2-m aperture telescopes, we found that point-symmetric
exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can
be tolerated in order to survey at least 150 targets during the mission
lifetime. Considering modeled resonant structures created by an Earth-like
planet orbiting at 1 AU around a Sun-like star, we show that the tolerable dust
density for planet detection goes down to about 15 times the solar zodiacal
density for face-on systems and decreases with the disc inclination. The upper
limits on the tolerable exozodiacal dust density derived in this study must be
considered as rather pessimistic, but still give a realistic estimation of the
typical sensitivity that we will need to reach on exozodiacal discs in order to
prepare the scientific programme of future Earth-like planet characterisation
missions.Comment: 17 pages, accepted for publication in A&
The long period eccentric orbit of the particle accelerator HD167971 revealed by long baseline interferometry
Using optical long baseline interferometry, we resolved for the first time
the two wide components of HD167971, a candidate hierarchical triple system
known to efficiently accelerate particles. Our multi-epoch VLTI observations
provide direct evidence for a gravitational link between the O8 supergiant and
the close eclipsing O + O binary. The separation varies from 8 to 15 mas over
the three-year baseline of our observations, suggesting that the components
evolve on a wide and very eccentric orbit (most probably e>0.5). These results
provide evidence that the wide orbit revealed by our study is not coplanar with
the orbit of the inner eclipsing binary. From our measurements of the
near-infrared luminosity ratio, we constrain the spectral classification of the
components in the close binary to be O6-O7, and confirm that these stars are
likely main-sequence objects. Our results are discussed in the context of the
bright non-thermal radio emission already reported for this system, and we
provide arguments in favour of a maximum radio emission coincident with
periastron passage. HD167971 turns out to be an efficient O-type particle
accelerator that constitutes a valuable target for future high angular
resolution radio imaging using VLBI facilities.Comment: 8 pages, including 4 figures, accepted by Monthly Notices of the
Royal Astronomical Societ
Prospects for near-infrared characterisation of hot Jupiters with VSI
In this paper, we study the feasibility of obtaining near-infrared spectra of
bright extrasolar planets with the 2nd generation VLTI Spectro-Imager
instrument (VSI), which has the required angular resolution to resolve nearby
hot Extrasolar Giant Planets (EGPs) from their host stars. Taking into account
fundamental noises, we simulate closure phase measurements of several
extrasolar systems using four 8-m telescopes at the VLT and a low spectral
resolution (R = 100). Synthetic planetary spectra from T. Barman are used as an
input. Standard chi2-fitting methods are then used to reconstruct planetary
spectra from the simulated data. These simulations show that low-resolution
spectra in the H and K bands can be retrieved with a good fidelity for half a
dozen targets in a reasonable observing time (about 10 hours, spread over a few
nights). Such observations would strongly constrain the planetary temperature
and albedo, the energy redistribution mechanisms, as well as the chemical
composition of their atmospheres. Systematic errors, not included in our
simulations, could be a serious limitation to these performance estimations.
The use of integrated optics is however expected to provide the required
instrumental stability (around 10^-4 on the closure phase) to enable the first
thorough characterisation of extrasolar planetary emission spectra in the
near-infrared.Comment: 10 pages, 8 figures, Proc. SPIE conference 7013 "Optical and Infrared
Interferometry" (Marseille 2008
Vortex Image Processing (VIP) package for high-contrast direct imaging
VIP is a Python instrument-agnostic toolbox featuring a flexible framework for reproducible and robust data reduction. VIP currently supports three high-contrast imaging observational techniques: angular, reference-star and multi-spectral differential imaging. The code can be downloaded from our git repository on Github: http://github.com/vortex-exoplanet/VI
Searching for faint companions with VLTI/PIONIER. I. Method and first results
Context. A new four-telescope interferometric instrument called PIONIER has
recently been installed at VLTI. It provides improved imaging capabilities
together with high precision. Aims. We search for low-mass companions around a
few bright stars using different strategies, and determine the dynamic range
currently reachable with PIONIER. Methods. Our method is based on the closure
phase, which is the most robust interferometric quantity when searching for
faint companions. We computed the chi^2 goodness of fit for a series of binary
star models at different positions and with various flux ratios. The resulting
chi^2 cube was used to identify the best-fit binary model and evaluate its
significance, or to determine upper limits on the companion flux in case of non
detections. Results. No companion is found around Fomalhaut, tau Cet and
Regulus. The median upper limits at 3 sigma on the companion flux ratio are
respectively of 2.3e-3 (in 4 h), 3.5e-3 (in 3 h) and 5.4e-3 (in 1.5 h) on the
search region extending from 5 to 100 mas. Our observations confirm that the
previously detected near-infrared excess emissions around Fomalhaut and tau Cet
are not related to a low-mass companion, and instead come from an extended
source such as an exozodiacal disk. In the case of del Aqr, in 30 min of
observation, we obtain the first direct detection of a previously known
companion, at an angular distance of about 40 mas and with a flux ratio of
2.05e-2 \pm 0.16e-2. Due to the limited u,v plane coverage, its position can,
however, not be unambiguously determined. Conclusions. After only a few months
of operation, PIONIER has already achieved one of the best dynamic ranges
world-wide for multi-aperture interferometers. A dynamic range up to about
1:500 is demonstrated, but significant improvements are still required to reach
the ultimate goal of directly detecting hot giant extrasolar planets.Comment: 11 pages, 6 figures, accepted for publication in A&
Improving Interferometric Null Depth Measurements using Statistical Distributions: Theory and First Results with the Palomar Fiber Nuller
A new "self-calibrated" statistical analysis method has been developed for
the reduction of nulling interferometry data. The idea is to use the
statistical distributions of the fluctuating null depth and beam intensities to
retrieve the astrophysical null depth (or equivalently the object's visibility)
in the presence of fast atmospheric fluctuations. The approach yields an
accuracy much better (about an order of magnitude) than is presently possible
with standard data reduction methods, because the astrophysical null depth
accuracy is no longer limited by the magnitude of the instrumental phase and
intensity errors but by uncertainties on their probability distributions. This
approach was tested on the sky with the two-aperture fiber nulling instrument
mounted on the Palomar Hale telescope. Using our new data analysis approach
alone-and no observations of calibrators-we find that error bars on the
astrophysical null depth as low as a few 10-4 can be obtained in the
near-infrared, which means that null depths lower than 10-3 can be reliably
measured. This statistical analysis is not specific to our instrument and may
be applicable to other interferometers
Nulling interferometry: performance comparison between Antarctica and other ground-based sites
Detecting the presence of circumstellar dust around nearby solar-type main
sequence stars is an important pre-requisite for the design of future
life-finding space missions such as ESA's Darwin or NASA's Terrestrial Planet
Finder (TPF). The high Antarctic plateau may provide appropriate conditions to
perform such a survey from the ground. We investigate the performance of a
nulling interferometer optimised for the detection of exozodiacal discs at Dome
C, on the high Antarctic plateau, and compare it to the expected performance of
similar instruments at temperate sites. Based on the currently available
measurements of the turbulence characteristics at Dome C, we adapt the GENIEsim
software (Absil et al. 2006, A&A 448) to simulate the performance of a nulling
interferometer on the high Antarctic plateau. To feed a realistic instrumental
configuration into the simulator, we propose a conceptual design for ALADDIN,
the Antarctic L-band Astrophysics Discovery Demonstrator for Interferometric
Nulling. We assume that this instrument can be placed above the 30-m high
boundary layer, where most of the atmospheric turbulence originates. We show
that an optimised nulling interferometer operating on a pair of 1-m class
telescopes located 30 m above the ground could achieve a better sensitivity
than a similar instrument working with two 8-m class telescopes at a temperate
site such as Cerro Paranal. The detection of circumstellar discs about 20 times
as dense as our local zodiacal cloud seems within reach for typical Darwin/TPF
targets in a integration time of a few hours. Moreover, the exceptional
turbulence conditions significantly relax the requirements on real-time control
loops, which has favourable consequences on the feasibility of the nulling
instrument.Comment: 10 pages, accepted for publication in A&
Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm
Context. Data processing constitutes a critical component of high-contrast exoplanet imaging. Its role is almost as important as the choice of a coronagraph or a wavefront control system, and it is intertwined with the chosen observing strategy. Among the data processing techniques for angular differential imaging (ADI), the most recent is the family of principal component analysis (PCA) based algorithms. It is a widely used statistical tool developed during the first half of the past century. PCA serves, in this case, as a subspace projection technique for constructing a reference point spread function (PSF) that can be subtracted from the science data for boosting the detectability of potential companions present in the data. Unfortunately, when building this reference PSF from the science data itself, PCA comes with certain limitations such as the sensitivity of the lower dimensional orthogonal subspace to non-Gaussian noise.
Aims. Inspired by recent advances in machine learning algorithms such as robust PCA, we aim to propose a localized subspace projection technique that surpasses current PCA-based post-processing algorithms in terms of the detectability of companions at near real-time speed, a quality that will be useful for future direct imaging surveys.
Methods. We used randomized low-rank approximation methods recently proposed in the machine learning literature, coupled with entry-wise thresholding to decompose an ADI image sequence locally into low-rank, sparse, and Gaussian noise components (LLSG). This local three-term decomposition separates the starlight and the associated speckle noise from the planetary signal, which mostly remains in the sparse term. We tested the performance of our new algorithm on a long ADI sequence obtained on β Pictoris with VLT/NACO.
Results. Compared to a standard PCA approach, LLSG decomposition reaches a higher signal-to-noise ratio and has an overall better performance in the receiver operating characteristic space. This three-term decomposition brings a detectability boost compared to the full-frame standard PCA approach, especially in the small inner working angle region where complex speckle noise prevents PCA from discerning true companions from noise
- …