129 research outputs found

    Biomechanical analyses of the performance of Paralympians: From foundation to elite level

    Get PDF
    Biomechanical analysis of sport performance provides an objective method of determining performance of a particular sporting technique. In particular, it aims to add to the understanding of the mechanisms influencing performance, characterization of athletes, and provide insights into injury predisposition. Whilst the performance in sport of able-bodied athletes is well recognised in the literature, less information and understanding is known on the complexity, constraints and demands placed on the body of an individual with a disability. This paper provides a dialogue that outlines scientific issues of performance analysis of multi-level athletes with a disability, including Paralympians. Four integrated themes are explored the first of which focuses on how biomechanics can contribute to the understanding of sport performance in athletes with a disability and how it may be used as an evidence-based tool. This latter point questions the potential for a possible cultural shift led by emergence of user-friendly instruments. The second theme briefly discusses the role of reliability of sport performance and addresses the debate of two-dimensional and three-dimensional analysis. The third theme address key biomechanical parameters and provides guidance to clinicians, and coaches on the approaches adopted using biomechanical/sport performance analysis for an athlete with a disability starting out, to the emerging and elite Paralympian. For completeness of this discourse, the final theme is based on the controversial issues on the role of assisted devices and the inclusion of Paralympians into able-bodied sport is also presented. All combined, this dialogue highlights the intricate relationship between biomechanics and training of individuals with a disability. Furthermore, it illustrates the complexity of modern training of athletes which can only lead to a better appreciation of the performances to be delivered in the London 2012 Paralympic Games

    Mapping protein dynamics at high spatial resolution with temperature-jump X-ray crystallography

    Get PDF
    æž©ćșŠă«ă‚ˆă‚‹é…”çŽ ăźæ§‹é€ ć€‰ćŒ–ă‚’ćˆ†ć­ć‹•ç”»æ’źćœ± æ§˜ă€…ăȘç”Ÿäœ“é«˜ćˆ†ć­ăźăƒ€ă‚€ăƒŠăƒŸă‚Żă‚čをæ±șćźšă™ă‚‹æ–°ăŸăȘæ–čæł•è«–. äșŹéƒœć€§ć­Šăƒ—ăƒŹă‚čăƒȘăƒȘăƒŒă‚č. 2023-09-19.Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics

    Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator

    Get PDF
    In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel network functioning as an oxygen−nitrogen mixer generates differential oxygen concentration. By controlling the relative flow rate of the oxygen and nitrogen input gases, the dissolved oxygen (DO) concentration in proximal microchannels filled with culture media are precisely regulated by molecular diffusion. Sensors consisting of an oxygen-sensitive dye embedded in the fluid channels permit dynamic fluorescence-based monitoring of the DO concentration using low-cost light-emitting diodes. To demonstrate the general utility of the platform for both aerobic and anaerobic culture, three bacteria with differential oxygen requirements (E. coli, A. viscosus, and F. nucleatum), as well as a model mammalian cell line (murine embryonic fibroblast cells (3T3)), were cultured. Growth characteristics of the selected species were analyzed as a function of eight discrete DO concentrations, ranging from 0 ppm (anaerobic) to 42 ppm (fully saturated)

    Economic language and economy change: with implications for cyber-physical systems

    Get PDF
    The implementation of cyber-physical and similar systems depends on prevailing social and economic conditions. It is here argued that, if the effect of these technologies is to be benign, the current neo-liberal economy must change to a radically more cooperative model. In this paper, economy change means a thorough change to a qualitatively different kind of economy. It is contrasted with economic change, which is the kind of minor change usually considered in mainstream discourse. The importance of language is emphasised, including that of techno-optimism and that of economic conservatism. Problems of injustice, strife, and ecological overload cannot be solved by conventional growth together with technical efficiency gains. Rather, a change is advocated from economics-as-usual to a broader concept, oikonomia (root-household management), which takes into account all that contributes to a good life, including what cannot be represented quantitatively. Some elements of such a broader economy (work; basic income; asset and income limits) are discussed. It is argued that the benefits of technology can be enhanced and the ills reduced in such an economy. This is discussed in the case of cyber-physical systems under the headings employment, security, standards and oligopoly, and energy efficiency. The paper concludes that such systems, and similar technological developments, cannot resolve the problems of sustainability within an economy-as-usual model. If, however, there is the will to create a cooperative and sustainable economy, technology can contribute significantly to the resolution of present problems

    Designer Gene Delivery Vectors: Molecular Engineering and Evolution of Adeno-Associated Viral Vectors for Enhanced Gene Transfer

    Get PDF
    Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. “Shielding” polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating ‘designer’ gene delivery vectors with enhanced properties

    MRI-derived g-ratio and lesion severity in newly diagnosed multiple sclerosis

    Get PDF
    Myelin loss is associated with axonal damage in established multiple sclerosis. This relationship is challenging to study in vivo in early disease. Here, we ask whether myelin loss is associated with axonal damage at diagnosis, by combining non-invasive neuroimaging and blood biomarkers. We performed quantitative microstructural MRI and single molecule ELISA plasma neurofilament measurement in 73 patients with newly diagnosed, immunotherapy naïve relapsing-remitting multiple sclerosis. Myelin integrity was evaluated using aggregate g-ratios, derived from magnetization transfer saturation (MTsat) and neurite orientation dispersion and density imaging (NODDI) diffusion data. We found significantly higher g-ratios within cerebral white matter lesions (suggesting myelin loss) compared with normal-appearing white matter (0.61 vs 0.57, difference 0.036, 95% CI 0.029 to 0.043, p < 0.001). Lesion volume (Spearman’s rho rs= 0.38, p < 0.001) and g-ratio (rs= 0.24 p < 0.05) correlated independently with plasma neurofilament. In patients with substantial lesion load (n = 38), those with higher g-ratio (defined as greater than median) were more likely to have abnormally elevated plasma neurofilament than those with normal g-ratio (defined as less than median) (11/23 [48%] versus 2/15 [13%] p < 0.05). These data suggest that, even at multiple sclerosis diagnosis, reduced myelin integrity is associated with axonal damage. MRI-derived g-ratio may provide useful additional information regarding lesion severity, and help to identify individuals with a high degree of axonal damage at disease onset. York, Martin et al. simultaneously measured g-ratio and plasma neurofilament in 73 relapsing-remitting multiple sclerosis patients at diagnosis using advanced MRI and single molecule ELISA. They demonstrate that g-ratio of cerebral white matter lesions varies at diagnosis, and show that high g-ratio of lesions is associated with elevated plasma neurofilament

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore