15 research outputs found

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl

    The Physics of the B Factories

    Get PDF

    Measurement of the top-quark mass using a leptonic invariant mass in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of the top-quark mass (mt) in the tt¯ → lepton + jets channel is presented, with an experimental technique which exploits semileptonic decays of b-hadrons produced in the top-quark decay chain. The distribution of the invariant mass mℓμ of the lepton, ℓ (with ℓ = e, μ), from the W-boson decay and the muon, μ, originating from the b-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract mt. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb−1 of s√ = 13 TeV pp collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is mt = 174.41 ± 0.39 (stat.) ± 0.66 (syst.) ± 0.25 (recoil) GeV, where the third uncertainty arises from changing the PYTHIA8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup

    Deoxynucleoside Kinases and Their Potential Role in Deoxynucleoside Cytotoxicity

    No full text

    Glass transition under confinement-what can be learned from calorimetry

    No full text
    Calorimetry is an effective analytical tool to characterize the glass transition and phase transitions under confinement. Calorimetry offers a broad dynamic range regarding heating and cooling rates, including isothermal and temperature modulated operation. Today 12 orders of magnitude in scanning rate can be covered by combining different types of calorimeters. The broad dynamic range, comparable to dielectric spectroscopy, is especially of interest for the study of kinetically controlled processes like crystallization or glass transition. Accuracy of calorimetric measurements is not very high. Commonly it does not reach 0.1% and often accuracy is only a few percent. Nevertheless, calorimetry can reach high sensitivity and reproducibility. Both are of particular interest for the study of confined systems. Low addenda heat capacity chip calorimeters are capable to measure the step in heat capacity at the glass transition in nanometer thin films. The good reproducibility is used for the study of glass forming materials confined by nanometer sized structures, like porous glasses, semicrystalline structures, nanocomposites, phase separated block copolymers, etc. Calorimetry allows also for the frequency dependent measurement of complex heat capacity in a frequency range covering several orders of magnitude. Here I exclusively consider calorimetry and its application to glass transition in confined materials. In most cases calorimetry reveals only a weak dependence of the glass transition temperature on confinement as long as the confining dimensions are above 10 nm. Why these findings contradict many other studies applying other techniques to similar systems is still an unsolved problem of glass transition in confinement

    DNA and Double-Stranded Oligonucleotides

    No full text
    corecore