111 research outputs found

    Wave energy in Europe: Views on experiences and progress to date

    Get PDF
    publisher: Elsevier articletitle: Wave energy in Europe: Views on experiences and progress to date journaltitle: International Journal of Marine Energy articlelink: http://dx.doi.org/10.1016/j.ijome.2015.09.001 content_type: article copyright: © 2015 Elsevier Ltd. All rights reserved

    Reports of interactive meetings with policy makers

    Get PDF
    The Streamlining of Ocean Wave Farms Impact Assessment (SOWFIA) Project (IEE/09/809/ SI2.558291) is an EU Intelligent Energy Europe (IEE) funded project that draws together ten partners, across eight European countries, who are actively involved with planned wave farm test centres. The SOWFIA project aims to achieve the sharing and consolidation of pan-European experience of consenting processes and environmental and socio-economic impact assessment (IA) best practices for offshore wave energy conversion developments. Studies of wave farm demonstration projects in each of the collaborating EU nations are contributing to the findings. The study sites comprise a wide range of device technologies, environmental settings and stakeholder interests. Through project workshops, meetings, on-going communication and networking amongst project partners, ideas and experiences relating to IA and policy are being shared, and co-ordinated studies addressing key questions for wave energy development are being carried out. The overall goal of the SOWFIA project is to provide recommendations for approval process streamlining and European-wide streamlining of IA processes, thereby helping to remove legal, environmental and socio-economic barriers to the development of offshore power generation from waves. By utilising the findings from technology-specific monitoring at multiple sites, SOWFIA will accelerate knowledge transfer and promote European-wide expertise on environmental and socio-economic impact assessments of wave energy projects. In this way, the development of the future, commercial phase of offshore wave energy installations will benefit from the lessons learned from existing smaller-scale developments

    Inventory of Environmental Impact Monitoring Activities at Wave & Tidal Energy Sites in Europe

    Get PDF
    The Streamlining of Ocean Wave Farms Impact Assessment (SOWFIA) Project (IEE/09/809/ SI2.558291) is an EU Intelligent Energy Europe (IEE) funded project that draws together ten partners, across eight European countries, who are actively involved with planned wave farm test centres. The SOWFIA project aims to achieve the sharing and consolidation of pan-European experience of consenting processes and environmental and socio-economic impact assessment (IA) best practices for offshore wave energy conversion developments. Studies of wave farm demonstration projects in each of the collaborating EU nations are contributing to the findings. The study sites comprise a wide range of device technologies, environmental settings and stakeholder interests. Through project workshops, meetings, on-going communication and networking amongst project partners, ideas and experiences relating to IA and policy are being shared, and co-ordinated studies addressing key questions for wave energy development are being carried out. The overall goal of the SOWFIA project is to provide recommendations for approval process streamlining and European-wide streamlining of IA processes, thereby helping to remove legal, environmental and socio-economic barriers to the development of offshore power generation from waves. By utilising the findings from technology-specific monitoring at multiple sites, SOWFIA will accelerate knowledge transfer and promote European-wide expertise on environmental and socio-economic impact assessments of wave energy projects. In this way, the development of the future, commercial phase of offshore wave energy installations will benefit from the lessons learned from existing smaller-scale developments

    Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection

    Get PDF
    Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome

    SOWFIA Project - Work Package 3 Interim Report

    Get PDF
    The Streamlining of Ocean Wave Farms Impact Assessment (SOWFIA) Project (IEE/09/809/ SI2.558291) is an EU Intelligent Energy Europe (IEE) funded project that draws together ten partners, across eight European countries, who are actively involved with planned wave farm test centres. The SOWFIA project aims to achieve the sharing and consolidation of pan-European experience of consenting processes and environmental and socio-economic impact assessment (IA) best practices for offshore wave energy conversion developments. Studies of wave farm demonstration projects in each of the collaborating EU nations are contributing to the findings. The study sites comprise a wide range of device technologies, environmental settings and stakeholder interests. Through project workshops, meetings, on-going communication and networking amongst project partners, ideas and experiences relating to IA and policy are being shared, and co-ordinated studies addressing key questions for wave energy development are being carried out. The overall goal of the SOWFIA project is to provide recommendations for approval process streamlining and European-wide streamlining of IA processes, thereby helping to remove legal, environmental and socio-economic barriers to the development of offshore power generation from waves. By utilising the findings from technology-specific monitoring at multiple sites, SOWFIA will accelerate knowledge transfer and promote European-wide expertise on environmental and socio-economic impact assessments of wave energy projects. In this way, the development of the future, commercial phase of offshore wave energy installations will benefit from the lessons learned from existing smaller-scale developments

    Standard of civilization, nomadism and territoriality in nineteenth-century international society

    Get PDF
    In this chapter, the encounter between the Russian Empire and the nomads of the Eurasian steppe in the nineteenth century is analyzed using the theoretical framework of the standard of civilization. The creation of the Westphalian state-model in Europe in the seventeenth century, linked to the later emergence of the notion of the standard of civilization led to the ‘othering’ of the nomads of the Eurasian steppe as barbarians, as a threat to the borders of civilized Europe. The chapter presents also an argument to define ‘territoriality’ as not only an institution of international society of the time but also as a distinctive quality and requirement for being considered ‘civilized’. In this analytical framework, the nomads become the ‘other’, the ‘alien’, the ‘menace’, onto which projections of rationality and modernity were cast in order to prevent threats to Russia’s European and civilized identity. The chapter sheds light on the encounter between ‘fixed’ and ‘mobile’ units in the course of expansion of international society; contextualizes the role played by nomadic tribes in resisting the application of Westphalian spatial categories in the Eurasian space; and scrutinizes what the role of nomads was in constructing a European, civilized identity.PostprintPeer reviewe

    Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives

    Get PDF
    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites relevant to a specific phenotypic characteristic can be identified. However, the reliability of the analytical data is a prerequisite for correct biological interpretation in metabolomics analysis. In this review the challenges in quantitative metabolomics analysis with regards to analytical as well as data preprocessing steps are discussed. Recommendations are given on how to optimize and validate comprehensive silylation-based methods from sample extraction and derivatization up to data preprocessing and how to perform quality control during metabolomics studies. The current state of method validation and data preprocessing methods used in published literature are discussed and a perspective on the future research necessary to obtain accurate quantitative data from comprehensive GC-MS data is provided

    Superior antigen-specific CD4+ T-cell response with AS03-adjuvantation of a trivalent influenza vaccine in a randomised trial of adults aged 65 and older

    Get PDF
    BACKGROUND: The effectiveness of trivalent influenza vaccines may be reduced in older versus younger adults because of age-related immunosenescence. The use of an adjuvant in such a vaccine is one strategy that may combat immunosenescence, potentially by bolstering T-cell mediated responses. METHODS: This observer-blind study, conducted in the United States (US) and Spain during the 2008-2009 influenza season, evaluated the effect of Adjuvant System AS03 on specific T-cell responses to a seasonal trivalent influenza vaccine (TIV) in >/=65 year-old adults.Medically-stable adults aged >/=65 years were randomly allocated to receive a single dose of AS03-adjuvanted TIV (TIV/AS03) or TIV. Healthy adults aged 18-40 years received only TIV. Blood samples were collected on Day 0, Day 21, Day 42 and Day 180. Influenza-specific CD4+ T cells, defined by the induction of the immune markers CD40L, IL-2, IFN-gamma, or TNF-alpha, were measured in ex vivo cultures of antigen-stimulated peripheral blood mononuclear cells. RESULTS: A total of 192 adults were vaccinated: sixty nine and seventy three >/=65 year olds received TIV/AS03 and TIV, respectively; and fifty 18 - 40 year olds received TIV. In the >/=65 year-old group on Day 21, the frequency of CD4+ T cells specific to the three vaccine strains was superior in the TIV/AS03 recipients to the frequency in TIV (p /=65 year-old recipients of TIV/AS03 than in the 18 - 40 year old recipients of TIV on Days 21 (p = 0.006) and 42 (p = 0.011). CONCLUSION: This positive effect of AS03 Adjuvant System on the CD4+ T-cell response to influenza vaccine strains in older adults could confer benefit in protection against clinical influenza disease in this population. TRIAL REGISTRATION: (Clinicaltrials.gov.). NCT00765076

    Generalisability and Cost-Impact of Antibiotic-Impregnated Central Venous Catheters for Reducing Risk of Bloodstream Infection in Paediatric Intensive Care Units in England

    Get PDF
    Background: We determined the generalisability and cost-impact of adopting antibiotic-impregnated CVCs in all paediatric intensive care units (PICUs) in England, based on results from a large randomised controlled trial (the CATCH trial; ISRCTN34884569). Methods: BSI rates using standard CVCs were estimated through linkage of national PICU audit data (PICANet) with laboratory surveillance data. We estimated the number of BSI averted if PICUs switched from standard to antibiotic-impregnated CVCs by applying the CATCH trial rate-ratio (0.40; 95% CI 0.17,0.97) to the BSI rate using standard CVCs. The value of healthcare resources made available by averting one BSI as estimated from the trial economic analysis was £10,975; 95% CI -£2,801,£24,751. Results: The BSI rate using standard CVCs was 4.58 (95% CI 4.42,4.74) per 1000 CVC-days in 2012. Applying the rate-ratio gave 232 BSI averted using antibiotic CVCs. The additional cost of purchasing antibiotic-impregnated compared with standard CVCs was £36 for each child, corresponding to additional costs of £317,916 for an estimated 8831 CVCs required in PICUs in 2012. Based on 2012 BSI rates, management of BSI in PICUs cost £2.5 million annually (95% uncertainty interval: -£160,986, £5,603,005). The additional cost of antibiotic CVCs would be less than the value of resources associated with managing BSI in PICUs with standard BSI rates >1.2 per 1000 CVC-days. Conclusions: The cost of introducing antibiotic-impregnated CVCs is less than the cost associated with managing BSIs occurring with standard CVCs. The long-term benefits of preventing BSI could mean that antibiotic CVCs are cost-effective even in PICUs with extremely low BSI rates
    corecore