24 research outputs found

    Towards an understanding of neuroscience for science educators

    Get PDF
    Advances in neuroscience have brought new insights to the development of cognitive functions. These data are of considerable interest to educators concerned with how students learn. This review documents some of the recent findings in neuroscience, which is richer in describing cognitive functions than affective aspects of learning. A brief overview is presented here of the techniques used to generate data from imaging and how these findings have the possibility to inform educators. There are implications for considering the impact of neuroscience at all levels of education – from the classroom teacher and practitioner to policy. This relatively new cross-disciplinary area of research implies a need for educators and scientists to engage with each other. What questions are emerging through such dialogues between educators and scientists are likely to shed light on, for example, reward, motivation, working memory, learning difficulties, bilingualism and child development. The sciences of learning are entering a new paradigm

    Effect of preweaned dairy calf housing system on antimicrobial resistance in commensal Escherichia coli

    No full text
    Group housing of preweaned dairy calves is a growing practice in the United States. The objective of this practice is to increase the average daily gain of calves in a healthy and humane environment while reducing labor requirements. However, feeding protocols, commingling of calves, and occurrence of disease in different calf-housing systems may affect the prevalence of antimicrobial drug-resistant bacteria. This study evaluated the effect of a group pen-housing system and individual pen-housing system on antimicrobial resistance trends in fecal Escherichia coli of preweaned dairy calves and on the prevalence of environmental Salmonella. Twelve farms from central New York participated in the study: 6 farms using an individual pen-housing system (IP), and 6 farms using a group pen-housing system (GP). A maximum of 3 fecal E. coli isolates per calf was tested for susceptibility to 12 antimicrobial drugs using a Kirby-Bauer disk diffusion assay. Calves in GP had a significantly higher proportion of E. coli resistant to ciprofloxacin and nalidixic acid, whereas calves in IP had a significantly higher proportion of E. coli resistant to ampicillin, ceftiofur, gentamycin, streptomycin, and tetracycline. Calf-housing system had an effect on resistance to individual antimicrobial drugs in E. coli, but no clear-cut advantage to either system was noted with regard to overall resistance frequency. No outstanding difference in the richness and diversity of resistant phenotypes was observed between the 2 calf-housing systems
    corecore