76 research outputs found

    Long-range transport of airborne microbes over the global tropical and subtropical ocean

    Get PDF
    The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth’s surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33–68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.En prens

    Aerosols in the Pre-industrial Atmosphere

    Get PDF
    Purpose of Review: We assess the current understanding of the state and behaviour of aerosols under pre-industrial conditions and the importance for climate. Recent Findings: Studies show that the magnitude of anthropogenic aerosol radiative forcing over the industrial period calculated by climate models is strongly affected by the abundance and properties of aerosols in the pre-industrial atmosphere. The low concentration of aerosol particles under relatively pristine conditions means that global mean cloud albedo may have been twice as sensitive to changes in natural aerosol emissions under pre-industrial conditions compared to present-day conditions. Consequently, the discovery of new aerosol formation processes and revisions to aerosol emissions have large effects on simulated historical aerosol radiative forcing. Summary: We review what is known about the microphysical, chemical, and radiative properties of aerosols in the pre-industrial atmosphere and the processes that control them. Aerosol properties were controlled by a combination of natural emissions, modification of the natural emissions by human activities such as land-use change, and anthropogenic emissions from biofuel combustion and early industrial processes. Although aerosol concentrations were lower in the pre-industrial atmosphere than today, model simulations show that relatively high aerosol concentrations could have been maintained over continental regions due to biogenically controlled new particle formation and wildfires. Despite the importance of pre-industrial aerosols for historical climate change, the relevant processes and emissions are given relatively little consideration in climate models, and there have been very few attempts to evaluate them. Consequently, we have very low confidence in the ability of models to simulate the aerosol conditions that form the baseline for historical climate simulations. Nevertheless, it is clear that the 1850s should be regarded as an early industrial reference period, and the aerosol forcing calculated from this period is smaller than the forcing since 1750. Improvements in historical reconstructions of natural and early anthropogenic emissions, exploitation of new Earth system models, and a deeper understanding and evaluation of the controlling processes are key aspects to reducing uncertainties in future

    The Contribution of Occult Precipitation to Nutrient Deposition on the West Coast of South Africa

    Get PDF
    The Strandveld mediterranean-ecosystem of the west coast of South Africa supports floristically diverse vegetation growing on mostly nutrient-poor aeolian sands and extending from the Atlantic Ocean tens of kilometers inland. The cold Benguela current upwelling interacts with warm onshore southerly winds in summer causing coastal fogs in this region. We hypothesized that fog and other forms of occult precipitation contribute moisture and nutrients to the vegetation. We measured occult precipitation over one year along a transect running inland in the direction of the prevailing wind and compared the nutrient concentrations with those in rainwater. Occult deposition rates of P, N, K, Mg, Ca, Na, Al and Fe all decreased with distance from the ocean. Furthermore, ratios of cations to Na were similar to those of seawater, suggesting a marine origin for these. In contrast, N and P ratios in occult precipitation were higher than in seawater. We speculate that this is due to marine foam contributing to occult precipitation. Nutrient loss in leaf litter from dominant shrub species was measured to indicate nutrient demand. We estimated that occult precipitation could meet the demand of the dominant shrubby species for annual N, P, K and Ca. Of these species, those with small leaves intercepted more moisture and nutrients than those with larger leaves and could take up foliar deposits of glycine, NO3-, NH4 + and Li (as tracer for K) through leaf surfaces. We conclude that occult deposition together with rainfall deposition are potentially important nutrient and moisture sources for the Strandveld vegetation that contribute to this vegetation being floristically distinct from neighbouring nutrient-poor Fynbos vegetation

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    An Overview of the Potential Environmental Impacts of Large Scale Microalgae Cultivation

    Get PDF
    Cultivation of microalgae for applications such as fuel, food, pharmaceuticals and farming is a rapidly developing area of research and investment. Whilst microalgae promises to deliver many environmental benefits compared with existing biofuel technology, there are also issues to overcome in relation to wastewater management, emissions control, land use change and responsible development of genetically modified organisms. This review seeks to highlight both the positive and negative impacts of microalgae cultivation, focusing on impacts to the aquatic, atmospheric and terrestrial biospheres that may occur and would need to be managed should the microalgae cultivation industry continue to grow

    Ecological genetics of invasive alien species

    Full text link
    • …
    corecore