1,027 research outputs found

    The Quiescent Spectrum of the AM CVn star CP Eri

    Get PDF
    We used the 6.5m MMT to obtain a spectrum of the AM CVn star CP Eri in quiescence. The spectrum is dominated by He I emission lines, which are clearly double peaked with a peak-to-peak separation of ~1900 km/s. The spectrum is similar to that of the longer period AM CVn systems GP Com and CE 315, linking the short and the long period AM CVn systems. In contrast with GP Com and CE 315, the spectrum of CP Eri does not show a central 'spike' in the line profiles, but it does show lines of SiII in emission. The presence of these lines indicates that the material being transferred is of higher metallicity than in GP Com and CE 315, which, combined with the low proper motion of the system, probably excludes a halo origin of the progenitor of CP Eri. We constrain the primary mass to M_1>0.27 M_sun and the orbital inclination to 33 degr < i < 80 degr. The presence of the He I lines in emission opens up the possibility for phase resolved spectroscopic studies which allows a determination of the system parameters and a detailed study of helium accretion disks under highly varying circumstances.Comment: 12 pages, 2 figures, accepted for publication in ApJ Letter

    Chaotic pulsations in variable stars with harmonic mode coupling

    Get PDF
    Some variable stars show multi-periodic behaviour with, among others, peaks in their power spectra at harmonically spaced frequencies with ratios 1:2:4. Such modes are nonlinearly coupled by two second-harmonic interactions and their amplitude equations are shown by a Painlevé analysis to be nonintegrable in a hamiltonian sense. Chaotic phenomena are thus expected, especially when other modes and dissipation are included. An example of stars to which this might apply is G191–16 among the variable white dwarfs

    Neurocognitive factors in sensory restoration of early deafness: a connectome model

    Get PDF
    Progress in biomedical technology (cochlear, vestibular, and retinal implants) has led to remarkable success in neurosensory restoration, particularly in the auditory system. However, outcomes vary considerably, even after accounting for comorbidity-for example, after cochlear implantation, some deaf children develop spoken language skills approaching those of their hearing peers, whereas other children fail to do so. Here, we review evidence that auditory deprivation has widespread effects on brain development, affecting the capacity to process information beyond the auditory system. After sensory loss and deafness, the brain's effective connectivity is altered within the auditory system, between sensory systems, and between the auditory system and centres serving higher order neurocognitive functions. As a result, congenital sensory loss could be thought of as a connectome disease, with interindividual variability in the brain's adaptation to sensory loss underpinning much of the observed variation in outcome of cochlear implantation. Different executive functions, sequential processing, and concept formation are at particular risk in deaf children. A battery of clinical tests can allow early identification of neurocognitive risk factors. Intervention strategies that address these impairments with a personalised approach, taking interindividual variations into account, will further improve outcomes

    The Helium-Rich Cataclysmic Variable ES Ceti

    Full text link
    We report photometry of the helium-rich cataclysmic variable ES Ceti during 2001-2004. The star is roughly stable at V ~ 17.0 and has a light curve dominated by a single period of 620 s, which remains measurably constant over the 3 year baseline. The weight of evidence suggests that this is the true orbital period of the underlying binary, not a "superhump" as initially assumed. We report GALEX ultraviolet magnitudes, which establish a very blue flux distribution (F_nu ~ nu^1.3), and therefore a large bolometric correction. Other evidence (the very strong He II 4686 emission, and a ROSAT detection in soft X-rays) also indicates a strong EUV source, and comparison to helium-atmosphere models suggests a temperature of 130+-10 kK. For a distance of 350 pc, we estimate a luminosity of (0.8-1.7)x10^34 erg/s, yielding a mass accretion rate of (2-4)x10^-9 M_sol/yr onto an assumed 0.7 M_sol white dwarf. This appears to be about as expected for white dwarfs orbiting each other in a 10 minute binary, assuming that mass transfer is powered by gravitational radiation losses. We estimate mean accretion rates for other helium-rich cataclysmic variables, and find that they also follow the expected M-dot ~ P_o^-5 relation. There is some evidence (the lack of superhumps, and the small apparent size of the luminous region) that the mass transfer stream in ES Cet directly strikes the white dwarf, rather than circularizing to form an accretion disk.Comment: PDF, 26 pages, 3 tables, 9 figures; accepted, in press, to appear February 2005, PASP; more info at http://cba.phys.columbia.edu

    Persistence in q-state Potts model: A Mean-Field approach

    Full text link
    We study the Persistence properties of the T=0 coarsening dynamics of one dimensional qq-state Potts model using a modified mean-field approximation (MMFA). In this approximation, the spatial correlations between the interfaces separating spins with different Potts states is ignored, but the correct time dependence of the mean density P(t)P(t) of persistent spins is imposed. For this model, it is known that P(t)P(t) follows a power-law decay with time, P(t)∼t−θ(q)P(t)\sim t^{-\theta(q)} where θ(q)\theta(q) is the qq-dependent persistence exponent. We study the spatial structure of the persistent region within the MMFA. We show that the persistent site pair correlation function P2(r,t)P_{2}(r,t) has the scaling form P2(r,t)=P(t)2f(r/t1/2)P_{2}(r,t)=P(t)^{2}f(r/t^{{1/2}}) for all values of the persistence exponent θ(q)\theta(q). The scaling function has the limiting behaviour f(x)∼x−2θf(x)\sim x^{-2\theta} (x≪1x\ll 1) and f(x)→1f(x)\to 1 (x≫1x\gg 1). We then show within the Independent Interval Approximation (IIA) that the distribution n(k,t)n(k,t) of separation kk between two consecutive persistent spins at time tt has the asymptotic scaling form n(k,t)=t−2ϕg(t,ktϕ)n(k,t)=t^{-2\phi}g(t,\frac{k}{t^{\phi}}) where the dynamical exponent has the form ϕ\phi=max(1/2,θ{1/2},\theta). The behaviour of the scaling function for large and small values of the arguments is found analytically. We find that for small separations k≪tϕ,n(k,t)∼P(t)k−τk\ll t^{\phi}, n(k,t)\sim P(t)k^{-\tau} where τ\tau=max(2(1−θ),2θ2(1-\theta),2\theta), while for large separations k≫tϕk\gg t^{\phi}, g(t,x)g(t,x) decays exponentially with xx. The unusual dynamical scaling form and the behaviour of the scaling function is supported by numerical simulations.Comment: 11 pages in RevTeX, 10 figures, submitted to Phys. Rev.

    Persistence in Cluster--Cluster Aggregation

    Get PDF
    Persistence is considered in diffusion--limited cluster--cluster aggregation, in one dimension and when the diffusion coefficient of a cluster depends on its size ss as D(s)∼sγD(s) \sim s^\gamma. The empty and filled site persistences are defined as the probabilities, that a site has been either empty or covered by a cluster all the time whereas the cluster persistence gives the probability of a cluster to remain intact. The filled site one is nonuniversal. The empty site and cluster persistences are found to be universal, as supported by analytical arguments and simulations. The empty site case decays algebraically with the exponent θE=2/(2−γ)\theta_E = 2/(2 - \gamma). The cluster persistence is related to the small ss behavior of the cluster size distribution and behaves also algebraically for 0≤γ<20 \le \gamma < 2 while for γ<0\gamma < 0 the behavior is stretched exponential. In the scaling limit t→∞t \to \infty and K(t)→∞K(t) \to \infty with t/K(t)t/K(t) fixed the distribution of intervals of size kk between persistent regions scales as n(k;t)=K−2f(k/K)n(k;t) = K^{-2} f(k/K), where K(t)∼tθK(t) \sim t^\theta is the average interval size and f(y)=e−yf(y) = e^{-y}. For finite tt the scaling is poor for k≪tzk \ll t^z, due to the insufficient separation of the two length scales: the distances between clusters, tzt^z, and that between persistent regions, tθt^\theta. For the size distribution of persistent regions the time and size dependences separate, the latter being independent of the diffusion exponent γ\gamma but depending on the initial cluster size distribution.Comment: 14 pages, 12 figures, RevTeX, submitted to Phys. Rev.

    Survival Probability of a Ballistic Tracer Particle in the Presence of Diffusing Traps

    Full text link
    We calculate the survival probability P_S(t) up to time t of a tracer particle moving along a deterministic trajectory in a continuous d-dimensional space in the presence of diffusing but mutually noninteracting traps. In particular, for a tracer particle moving ballistically with a constant velocity c, we obtain an exact expression for P_S(t), valid for all t, for d<2. For d \geq 2, we obtain the leading asymptotic behavior of P_S(t) for large t. In all cases, P_S(t) decays exponentially for large t, P_S(t) \sim \exp(-\theta t). We provide an explicit exact expression for the exponent \theta in dimensions d \leq 2, and for the physically relevant case, d=3, as a function of the system parameters.Comment: RevTeX, 4 page

    Ensemble Characteristics of the ZZ Ceti stars

    Get PDF
    We present the observed pulsation spectra of all known non-interacting ZZ Ceti stars (hydrogen atmosphere white dwarf variables; DAVs) and examine changes in their pulsation properties across the instability strip. We confirm the well established trend of increasing pulsation period with decreasing effective temperature across the ZZ Ceti instability strip. We do not find a dramatic order of magnitude increase in the number of observed independent modes in ZZ Ceti stars, traversing from the hot to the cool edge of the instability strip; we find that the cool DAVs have one more mode on average compared to the hot DAVs. We confirm the initial increase in pulsation amplitude at the blue edge, and find strong evidence of a decline in amplitude prior to the red edge. We present the first observational evidence that ZZ Ceti stars lose pulsation energy just before pulsations shut down at the empirical red edge of the instability strip.Comment: ApJ, in press. (26 pages, 3 figures

    X-ray and optical observations of the unique binary system HD49798/RXJ0648.0-4418

    Full text link
    We report the results of XMM-Newton observations of HD49798/RXJ0648.0-4418, the only known X-ray binary consisting of a hot sub-dwarf and a white dwarf. The white dwarf rotates very rapidly (P=13.2 s) and has a dynamically measured mass of 1.28+/-0.05 M_sun. Its X-ray emission consists of a strongly pulsed, soft component, well fit by a blackbody with kT~40 eV, accounting for most of the luminosity, and a fainter hard power-law component (photon index ~1.6). A luminosity of ~10^{32} erg/s is produced by accretion onto the white dwarf of the helium-rich matter from the wind of the companion, which is one of the few hot sub-dwarfs showing evidence of mass-loss. A search for optical pulsations at the South African Astronomical Observatory 1.9-m telescope gave negative results. X-rays were detected also during the white dwarf eclipse. This emission, with luminosity 2x10^{30} erg/s, can be attributed to HD 49798 and represents the first detection of a hot sub-dwarf star in the X-ray band. HD49798/RXJ0648.0-4418 is a post-common envelope binary which most likely originated from a pair of stars with masses ~8-10 M_sun. After the current He-burning phase, HD 49798 will expand and reach the Roche-lobe, causing a higher accretion rate onto the white dwarf which can reach the Chandrasekhar limit. Considering the fast spin of the white dwarf, this could lead to the formation of a millisecond pulsar. Alternatively, this system could be a Type Ia supernova progenitor with the appealing characteristic of a short time delay, being the descendent of relatively massive stars.Comment: Accepted for publication on The Astrophysical Journa

    Cluster persistence in one-dimensional diffusion--limited cluster--cluster aggregation

    Get PDF
    The persistence probability, PC(t)P_C(t), of a cluster to remain unaggregated is studied in cluster-cluster aggregation, when the diffusion coefficient of a cluster depends on its size ss as D(s)∼sγD(s) \sim s^\gamma. In the mean-field the problem maps to the survival of three annihilating random walkers with time-dependent noise correlations. For γ≥0\gamma \ge 0 the motion of persistent clusters becomes asymptotically irrelevant and the mean-field theory provides a correct description. For γ<0\gamma < 0 the spatial fluctuations remain relevant and the persistence probability is overestimated by the random walk theory. The decay of persistence determines the small size tail of the cluster size distribution. For 0<γ<20 < \gamma < 2 the distribution is flat and, surprisingly, independent of γ\gamma.Comment: 11 pages, 6 figures, RevTeX4, submitted to Phys. Rev.
    • …
    corecore