2,501 research outputs found

    The Bouvia Case Revisited: An Introduction to the Bioethical Topics of Individual Rights, Acts of Conscience, and the Right to Die

    Get PDF
    After a series of court appeals Elizabeth Bouvia won her right to die in 1986. Twenty-five years after the Bouvia case, issues of individual rights, acts of conscience for health care professionals, and the right to die continually inform health care practice and public policy. This article examines these three vital issues in the context of their relevance today, as well as the progression of health policy in regard to these topics since the Bouvia case. The complexity of the Bouvia case keeps it in the forefront of bioethics and health law studies; it begs one to consider how the Bouvia case will be viewed and discussed in another 25 years, as well as how it will continue to inform issues of individual rights, acts of conscience, and the right to die

    Chemical abundances in the protoplanetary disk LV2 (Orion): clues to the causes of the abundance anomaly in HII regions

    Get PDF
    Optical integral field spectroscopy of the archetype protoplanetary disk LV2 in the Orion Nebula is presented, taken with the VLT FLAMES/Argus fibre array. The detection of recombination lines of CII and OII from this class of objects is reported, and the lines are utilized as abundance diagnostics. The study is complemented with the analysis of HST Faint Object Spectrograph ultraviolet and optical spectra of the target contained within the Argus field of view. By subtracting the local nebula background the intrinsic spectrum of the proplyd is obtained and its elemental composition is derived for the first time. The proplyd is found to be overabundant in carbon, oxygen and neon compared to the Orion Nebula and the sun. The simultaneous coverage over LV2 of the CIII] 1908-A and [OIII] 5007-A collisionally excited lines (CELs) and CII and OII recombination lines (RLs) has enabled us to measure the abundances of C++ and O++ for LV2 with both sets of lines. The two methods yield consistent results for the intrinsic proplyd spectrum, but not for the proplyd spectrum contaminated by the generic nebula spectrum, thus providing one example where the long-standing abundance anomaly plaguing metallicity studies of HII regions has been resolved. These results would indicate that the standard forbidden-line methods used in the derivation of light metal abundances in HII regions in our own and other galaxies underestimate the true gas metallicity.Comment: Accepted by MNRAS November 8; 16 pages, 9 figs; typos corrected, error in FWHMs in table 4 corrected in this versio

    Dynamical Instability of a Rotating Dipolar Bose-Einstein Condensate

    Get PDF
    We calculate the hydrodynamic solutions for a dilute Bose-Einstein condensate with long-range dipolar interactions in a rotating, elliptical harmonic trap, and analyse their dynamical stability. The static solutions and their regimes of instability vary non-trivially on the strength of the dipolar interactions. We comprehensively map out this behaviour, and in particular examine the experimental routes towards unstable dynamics, which, in analogy to conventional condensates, may lead to vortex lattice formation. Furthermore, we analyse the centre of mass and breathing modes of a rotating dipolar condensate.Comment: 4 pages, including 2 figure

    Explosive Disintegration of a Massive Young Stellar System in Orion

    Full text link
    Young massive stars in the center of crowded star clusters are expected to undergo close dynamical encounters that could lead to energetic, explosive events. However, there has so far never been clear observational evidence of such a remarkable phenomenon. We here report new interferometric observations made with the Submillimeter Array (SMA) that indicate the well known enigmatic wide-angle outflow located in the Orion BN/KL star-forming region to have been produced by such a violent explosion during the disruption of a massive young stellar system, and that this was caused by a close dynamical interaction about 500 years ago. This outflow thus belongs to a totally different family of molecular flows which is not related to the classical bipolar flows that are generated by stars during their formation process. Our molecular data allow us to create a 3D view of the debris flow and to link this directly to the well known Orion H2_2 "fingers" farther outComment: Accepted by ApJ Letters The 3D movie can be found in: ftp://ftp.mpifr-bonn.mpg.de/outgoing/lzapata/movie.gi

    Atomic Bloch-Zener oscillations for sensitive force measurements in a cavity

    Full text link
    Cold atoms in an optical lattice execute Bloch-Zener oscillations when they are accelerated. We have performed a theoretical investigation into the case when the optical lattice is the intra-cavity field of a driven Fabry-Perot resonator. When the atoms oscillate inside the resonator, we find that their back-action modulates the phase and intensity of the light transmitted through the cavity. We solve the coupled atom-light equations self-consistently and show that, remarkably, the Bloch period is unaffected by this back-action. The transmitted light provides a way to observe the oscillation continuously, allowing high precision measurements to be made with a small cloud of atoms.Comment: 5 pages, 2 figures. Updated version including cavity heating effect

    Integral field spectroscopy of selected areas of the Bright Bar and Orion-S cloud in the Orion Nebula

    Full text link
    We present integral field spectroscopy of two selected zones in the Orion Nebula obtained with the Potsdam Multi-Aperture Spectrophotometer (PMAS), covering the optical spectral range from 3500 to 7200 A and with a spatial resolution of 1". The observed zones are located on the prominent Bright Bar and on the brightest area at the northeast of the Orion South cloud, both containing remarkable ionization fronts. We obtain maps of emission line fluxes and ratios, electron density and temperatures, and chemical abundances. We study the ionization structure and morphology of both fields, which ionization fronts show different inclination angles with respect to the plane of the sky. We find that the maps of electron density, O+/H+ and O/H ratios show a rather similar structure. We interpret this as produced by the strong dependence on density of the [OII] lines used to derive the O+ abundance, and that our nominal values of electron density-derived from the [SII] line ratio-may be slightly higher than the appropriate value for the O+ zone. We measure the faint recombination lines of OII in the field at the northeast of the Orion South cloud allowing us to explore the so-called abundance discrepancy problem. We find a rather constant abundance discrepancy across the field and a mean value similar to that determined in other areas of the Orion Nebula, indicating that the particular physical conditions of this ionization front do not contribute to this discrepancy.Comment: 15 pages, 10 figures. Accepted for publication in MNRA

    Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions

    Get PDF
    We calculate the critical rotation frequency at which a vortex state becomes energetically favorable over the vortex-free ground state in a harmonically trapped Bose-Einstein condensate whose atoms have dipole-dipole interactions as well as the usual s-wave contact interactions. In the Thomas-Fermi (hydrodynamic) regime, dipolar condensates in oblate cylindrical traps (with the dipoles aligned along the axis of symmetry of the trap) tend to have lower critical rotation frequencies than their purely s-wave contact interaction counterparts. The converse is true for dipolar condensates in prolate traps. Quadrupole excitations and centre of mass motion are also briefly discussed as possible competing mechanisms to a vortex as means by which superfluids with partially attractive interactions might carry angular momentumComment: 12 pages, 12 figure

    On an exact solution of the Thomas-Fermi equation for a trapped Bose-Einstein condensate with dipole-dipole interactions

    Get PDF
    We derive an exact solution to the Thomas-Fermi equation for a Bose-Einstein condensate which has dipole-dipole interactions as well as the usual s-wave contact interaction, in a harmonic trap. Remarkably, despite the non-local anisotropic nature of the dipolar interaction the solution is an inverted parabola, as in the pure s-wave case, but with a different aspect ratio. Various properties such as electrostriction and stability are discussed.Comment: 11 pages, 5 figure

    Exploring the effects of high-velocity flows in abundance determinations in H II regions. Bidimensional spectroscopy of HH 204 in the Orion Nebula

    Full text link
    We present results from integral field optical spectroscopy with the Potsdam Multi-Aperture Spectrograph of the Herbig-Haro (HH) object HH 204, with a spatial sampling of 1 x 1 arcsec^2. We have obtained maps of different emission lines, physical conditions and ionic abundances from collisionally excited lines. The ionization structure of the object indicates that the head of the bow shock is optically thick and has developed a trapped ionization front. The density at the head is at least five times larger than in the background ionized gas. We discover a narrow arc of high T_e([N II]) values delineating the southeast edge of the head. The temperature in this zone is about 1,000 K higher than in the rest of the field and should correspond to a shock-heated zone at the leading working surface of the gas flow. This is the first time this kind of feature is observed in a photoionized HH object. We find that the O^+ and O abundance maps show anomalous values at separate areas of the bow shock probably due to: a) overestimation of the collisional de-excitation effects of the [O II] lines in the compressed gas at the head of the bow shock, and b) the use of a too high T_e([N II]) at the area of the leading working surface of the flow.Comment: 12 pages, 7 Postscript figures, accepted for publication in MNRA

    Physical Conditions in Barnard's Loop, Components of the Orion-Eridanus Bubble, and Implications for the WIM Component of the ISM

    Get PDF
    We have supplemented existing spectra of Barnard's Loop with high accuracy spectrophotometry of one new position. Cloudy photoionization models were calculated for a variety of ionization parameters and stellar temperatures and compared with the observations. After testing the procedure with recent observations of M43, we establish that Barnard's Loop is photoionized by four candidate ionizing stars, but agreement between the models and observations is only possible if Barnard's Loop is enhanced in heavy elements by about a factor of 1.4. Barnard's Loop is very similar in properties to the brightest components of the Orion-Eridanus Bubble and the Warm Ionized Medium (WIM). We are able to establish models that bound the range populated in low-ionization color-color diagrams (I([SII])/I(H{\alpha}) versus I([NII])/I(H{\alpha})) using only a limited range of ionization parameters and stellar temperatures. Previously established variations in the relative abundance of heavy elements render uncertain the most common method of determining electron temperatures for components of the Orion-Eridanus Bubble and the WIM based on only the I([NII])/I(H{\alpha}) ratio, although we confirm that the lowest surface brightness components of the WIM are on average of higher electron temperature. The electron temperatures for a few high surface brightness WIM components determined by direct methods are comparable to those of classical bright H II regions. In contrast, the low surface brightness HII regions studied by the Wisconsin H{\alpha} Mapper are of lower temperatures than the classical bright HII regions
    • …
    corecore