117 research outputs found

    NEMA NU 2-2018 evaluation and image quality optimization of a new generation digital 32-cm axial field-of-view Omni Legend PET-CT using a genetic evolutionary algorithm

    Get PDF
    A performance evaluation was conducted on the new General Electric (GE) digital Omni Legend PET-CT system with 32 cm extended field of view. The first commercially available clinical digital bismuth germanate system. The system does not use time of flight (ToF). Testing was performed in accordance with the NEMA NU2–2018 standard. A comparison was made between two other commercial GE scanners with extended fields of view; the Discovery MI − 6 ring (ToF enabled) and the Discovery IQ (non-ToF). A genetic evolutionary algorithm was developed to optimize image reconstruction parameters from image quality assessments. The Omni demonstrated average spatial resolutions at 1 cm radial offset as 3.9 mm FWHM. The total system sensitivity at the center was 44.36 cps/kBq. The peak NECR was measured as 501 kcps at 17.8 kBq ml−1 with a 35.48% scatter fraction. The maximum count-rate error below NECR peak was 5.5%. Using standard iterative reconstructions, sphere contrast recovery coefficients were from 52.7 ± 3.2% (10 mm) to 92.5 ± 2.4% (37 mm). The PET-CT co-registration accuracy was 2.4 mm. In place of ToF, the Omni employs software corrections through a pre-trained neural network (PDL) (trained on non-ToF to ToF) that takes Bayesian penalized likelihood reconstruction (Q.Clear) images as input. The optimum parameters for image reconstruction, determined using the genetic algorithm were a Q.Clear parameter, β, of 350 and a ‘medium’ PDL setting. Using standard iterative reconstructions, the Omni initially showed increased background variability compared to the Discovery MI. With optimized PDL reconstruction parameters selected using the genetic algorithm the performance of the Omni surpassed that of the Discovery MI on all NEMA tests. The genetic algorithm’s demonstrated ability to enhance image quality in PET-CT imaging underscores the importance of algorithm driven optimization and underscores the requirement to validate its use in the clinical setting

    Axonemal structures reveal mechanoregulatory and disease mechanisms

    Get PDF
    Motile cilia and flagella beat rhythmically on the surface of cells to power the flow of fluid and to enable spermatozoa and unicellular eukaryotes to swim. In humans, defective ciliary motility can lead to male infertility and a congenital disorder called primary ciliary dyskinesia (PCD), in which impaired clearance of mucus by the cilia causes chronic respiratory infections1. Ciliary movement is generated by the axoneme, a molecular machine consisting of microtubules, ATP-powered dynein motors and regulatory complexes2. The size and complexity of the axoneme has so far prevented the development of an atomic model, hindering efforts to understand how it functions. Here we capitalize on recent developments in artificial intelligence-enabled structure prediction and cryo-electron microscopy (cryo-EM) to determine the structure of the 96-nm modular repeats of axonemes from the flagella of the alga Chlamydomonas reinhardtii and human respiratory cilia. Our atomic models provide insights into the conservation and specialization of axonemes, the interconnectivity between dyneins and their regulators, and the mechanisms that maintain axonemal periodicity. Correlated conformational changes in mechanoregulatory complexes with their associated axonemal dynein motors provide a mechanism for the long-hypothesized mechanotransduction pathway to regulate ciliary motility. Structures of respiratory-cilia doublet microtubules from four individuals with PCD reveal how the loss of individual docking factors can selectively eradicate periodically repeating structures

    The drivers of Chinese CO2 emissions from 1980 to 2030

    Get PDF
    China's energy consumption doubled within the first 25 years of economic reforms initiated at the end of the 1970s, and doubled again in the past 5 years. It has resulted of a threefold CO2 emissions increase since early of 1980s. China's heavy reliance on coal will make it the largest emitter of CO2 in the world. By combining structural decomposition and input–output analysis we seek to assess the driving forces of China's CO2 emissions from 1980 to 2030. In our reference scenario, production-related CO2 emissions will increase another three times by 2030. Household consumption, capital investment and growth in exports will largely drive the increase in CO2 emissions. Efficiency gains will be partially offset the projected increases in consumption, but our scenarios show that this will not be sufficient if China's consumption patterns converge to current US levels. Relying on efficiency improvements alone will not stabilize China's future emissions. Our scenarios show that even extremely optimistic assumptions of widespread installation of carbon dioxide capture and storage will only slow the increase in CO2 emissions

    Molecular and functional correction of a deep intronic splicing mutation in CFTR by CRISPR-Cas9 gene editing

    Get PDF
    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. The 10th most common mutation, c.3178-2477C>T (3849+10kb C>T), involves a cryptic, intronic splice site. This mutation was corrected in CF primary cells homozygous for this mutation by delivering pairs of guide RNAs (gRNAs) with Cas9 protein in ribonucleoprotein (RNP) complexes that introduce double-strand breaks to flanking sites to excise the 3849+10kb C>T mutation, followed by DNA repair by the non-homologous end-joining pathway, which functions in all cells of the airway epithelium. RNP complexes were delivered to CF basal epithelial cell by a non-viral, receptor-targeted nanocomplex comprising a formulation of targeting peptides and lipids. Canonical CFTR mRNA splicing was, thus, restored leading to the restoration of CFTR protein expression with concomitant restoration of electrophysiological function in airway epithelial air-liquid interface cultures. Off-target editing was not detected by Sanger sequencing of in silico-selected genomic sites with the highest sequence similarities to the gRNAs, although more sensitive unbiased whole genome sequencing methods would be required for possible translational developments. This approach could potentially be used to correct aberrant splicing signals in several other CF mutations and other genetic disorders where deep-intronic mutations are pathogenic

    Cell-intrinsic differences between human airway epithelial cells from children and adults

    Get PDF
    Summary The airway epithelium is a protective barrier that is maintained by the self-renewal and differentiation of basal stem cells. Increasing age is a principle risk factor for chronic lung diseases, but few studies have explored age-related molecular or functional changes in the airway epithelium. We retrieved epithelial biopsies from histologically normal tracheobronchial sites from pediatric and adult donors and compared their cellular composition and gene expression profile (in laser capture-microdissected whole epithelium, fluorescence-activated cell-sorted basal cells and basal cells in cell culture). Histologically, pediatric and adult tracheobronchial epithelium were similar in composition. We observed age-associated changes in RNA sequencing studies, including higher interferon-associated gene expression in pediatric epithelium. In cell culture, pediatric cells had higher colony-formation ability, sustained in vitro growth and out-competed adult cells in a direct competitive proliferation assay. Our results demonstrate cell-intrinsic differences between airway epithelial cells from children and adults in both homeostatic and proliferative states

    Monitoring the EU protected Geomalacus maculosus (Kerry Slug): what are the factors affecting catch returns in open and forested habitats?

    Get PDF
    Geomalacus maculosus is a slug species protected under EU law with a distribution limited to the west of Ireland and north-west Iberia. The species, originally thought to be limited within Ireland to deciduous woodland and peatland, has been found in a number of commercial conifer plantations since 2010. While forest managers are now required to incorporate the protection of the species where it is present, no clear species monitoring protocols are currently available. This study examines the efficacy of De Sangosse refuge traps across three habitats frequently associated with commercial forest plantations in Ireland and compares them with hand searching, a commonly used method for slug monitoring. Catch data during different seasons and under different weather conditions are also presented. Results indicate that autumn is the optimal time for sampling G. maculosus but avoiding extremes of hot or cold weather. While refuge traps placed at 1.5 m on trees in mature conifer plantations and directly on exposed rock in blanket peatlands result in significantly greater catches, hand searching is the most successful approach for clear-fell areas. Hand searches in clear-fell preceded by rain are likely to result in greater numbers caught. The results of this study form, for the first time, the basis for G. maculosus monitoring guidelines for forestry managers. © 2016, The Ecological Society of Japa
    • …
    corecore