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Abstract: A 4-channel silicon photonics transceiver array for Point-to-Point (P2P) fiber-to-
the-home (FTTH) optical networks at the central office (CO) side is demonstrated. A III-V O 
band photodetector array was integrated onto the silicon photonic transmitter through transfer 
printing technology, showing a polarization-independent responsivity of 0.39 - 0.49 A/W in 
the O band. The integrated PDs (30×40 μm2 mesa) have a 3 dB bandwidth of 11.5 GHz at -3 
V bias. Together with high-speed C band silicon ring modulators whose bandwidth is up to 
15 GHz, operation of the transceiver array at 10 Gbit/s is demonstrated. The use of transfer 
printing for the integration of the III-V photodetectors allows for an efficient use of III-V 
material and enables the scalable integration of III-V devices on silicon photonics wafers, 
thereby reducing their cost. 
© 2017 Optical Society of America 
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1. Introduction 

Ethernet point-to-point (P2P) access networks, with advantages such as a simple architecture, 
no need of expensive wavelength division multiplexing (WDM) components and the ease to 
upgrade, are mostly deployed in Europe [1]. In such access networks, each optical network 
unit located in the home of the subscriber is directly connected to a dedicated transceiver in 
the central office (CO), therefore requiring a large number of CO transceivers. In order to 
keep size and power consumption of such a CO manageable, the realization of integrated, low 
cost and low power consumption transceiver arrays is of paramount importance. Among 
several mainstream photonic integration platforms including silica-on-silicon (SOS) [2], InP 
[3] and silicon-on-insulator (SOI) [4], SOI has the obvious advantages of CMOS 
compatibility and high refractive index contrast, which allows high-volume production of 
compact photonic circuits with strong light-matter interaction, resulting in low cost, low 
power consumption and high bandwidth devices. The imec silicon photonics platform [5], 
amongst other platforms, enables the integration of high-speed devices such as Ge 
photodetectors (PDs), ring modulators, Mach-Zehnder modulators. Together with mature 
passive building blocks such a platform is well-suited for the integration of high-speed optical 
transceivers and transceiver arrays. For the CO transceiver array an O band receiver is 
required. Although Ge PDs are a good candidate for this function, the issue of realizing a 
polarization-independent data signal reception and the duplexing with the C band downstream 
signal results in a complex integrated circuit. Instead of Germanium, III-V semiconductor 
material can be used for the same purpose. As shown in Figure 1, by integrating a surface 
illuminated O band photodetector on top of the fiber-to-chip grating coupler, the O band 
upstream signal can be received in a polarization independent way. By choosing the cut-off 
wavelength of the photodetector between the O band and C band, the C band downstream 
signal can be coupled to fiber through the photodetector structure, without being absorbed, 
providing a straightforward path to optical duplexing. In order to cost-effectively integrate the 
III-V photodetectors on the silicon photonic wafers, wafer-scale processes are required. In 
conventional bonding technologies relying on die-to-wafer and wafer-to-wafer bonding [6-8] 
the efficiency of III-V material use is poor as only a very small fraction of the eventual chip 
surface requires III-V device structures. Transfer printing, as a novel technique, was first 
proposed in 2004 [9]. By utilizing this technique, micron-scale thin films such as III-V 
material coupons and devices [10-13] can be transferred from a source substrate to a target 
substrate with high alignment accuracy (+/-1.5 μm 3σ). More information on the transfer 
printing process of III-V coupons can be found in [10]. Since the material coupons/devices 
can be wafer-scale pre-defined in a dense array on the III-V source wafer and picked-up and 
printed in a massively parallel way, the efficiency of the usage of source material is 
significantly improved and the cost of the integration is greatly reduced. In the case of 
transfer printing of pre-processed opto-electronic components, the integration post-



processing just consists of a passivation and collective wiring of the devices. 
Moreover, the technique paves the way to integrate devices from different source wafers. 

In this paper we present the realization of a 4-channel silicon photonic transceiver array 
for P2P FTTH optical networks, operating at 10 Gbit/s per channel. An array of III-V O band 
photodetectors (PDs) was integrated with the silicon photonics circuit. We previously 
demonstrated the use of such PDs for a single channel transceiver where the integration was 
realized through bonding technology [14]. In this work, the PDs were integrated on top of the 
grating couplers of 4 channels through the transfer printing approach. This work showcases 
the great potential that transfer printing has for the integration of III-V opto-electronic 
components on a silicon photonic integrated circuit wafer. 

2. Transceiver configuration   

The schematic layout the proposed 4-channel transceiver array is depicted in Figure 1(a). The 
silicon photonic integrated circuit is realized in imec’s iSIPP25G platform. A 1550 nm CW 
laser is coupled to the silicon photonic transceiver, where it is split to 4 channels through 
cascaded 1×2 MMIs. Each of the channels has a silicon ring modulator, which serves as a 
downstream transmitter, to imprint the downstream data on the carrier (1550 nm). The signal 
is then coupled to fiber through the grating coupler and the integrated O band PD, as shown in 
Figure 1(b). By selecting the cut-off wavelength of the III-V absorbing material to be 
1.37 μm, the PDs are ‘transparent’ (4 orders of magnitude smaller responsivity) for the C 
band signal, enabling the duplexing of the C band and O band signal that are sent and 
received through the same fiber. Thanks to the vertical coupling scheme, the PDs have a 
polarization-independent responsivity of 0.39-0.49 A/W in the O band. 

 
Fig. 1. Schematic layout of the III-V-on-silicon FTTH transceiver array, (b) Schematic cross-
section of one transceiver. 

3. Transfer printing pre-fabricated PDs on Si PIC 

The key process discussed in this work is the transfer printing of the III-V photodetectors on 
the silicon photonic integrated circuit. As shows in Table. 1, the III-V O band PD layer stack 
consists of a 1 μm intrinsic InGaAsP absorbing layer with a cut-off wavelength of 1.37 μm. 
Besides the classical p-i-n layer structure, a 1 μm InGaAs layer is used for releasing the pre-
fabricated PDs. Instead of highly doped InP hereby a 60 nm thick intrinsic InP is used as the 
etch stop layer [11, 15]. 
The transfer-printing-based integration process flow is described in Figure 2. Figure 2(a) 
shows the full layer stack of the source wafer. Firstly the top sacrificial layer was removed by 
a short etch in HCl. In order to simplify the post-process after transfer printing, a U-shaped 
Ti/Au contact was defined, leaving a 17 μm wide absorption window for the reception of the 
upstream and the transmission of the downstream signal from and to the same fiber, 
respectively. The 30×40 μm2 PD mesa is defined using ICP using a 200 nm thick SiNx hard 
mask. After reaching the n-contact layer, a second mesa was defined by patterning the n-InP 
layer and a Ni/Ge/Au contact surrounding the PD mesa is defined. With a second SiNx hard 
mask the InGaAs release layer was etched through slightly into the InP substrate, as shown in 
Figure 2(f). Then the PD structures were encapsulated by a photoresist layer (~2.5 μm thick) 
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Of key importance for the operation of the transceiver is the transparency of the 
photodetector for the downstream C band signal. This was verified under CW conditions, as 
shown in Figure 5. As a bias of -3 V was applied during the dynamic measurements, all the 
static characterizations were done at the same -3 V bias. The responsivity for the O band 
signal is 0.39-0.49 A/W (Figure 5(a)) and it is quite constant over the range from 1270 nm to 
1350 nm wavelength (Figure 5(b)), while that for the C band signal is 0.025-0.03 mA/W, 
which is more than four orders of magnitude smaller (Figure 5(c)). The dark current of the 
integrated O band PDs varies from 0.6 to 1.1 μA. This however is not expected to impact the 
system performance when integrated with a transimpedance amplifier array [16].  

 
Fig. 5. Photocurrent of the transfer printed O band PDs (a) at 1310 nm, (b) over the range of 
1270 nm-1350 nm, (c) at 1550 nm (including the photodetector dark current). 

4.2 Dynamic characterization  

In order to verify the high-speed performance of the transceiver array, small signal 
characterization using a Vector Network Analyzer (VNA) was at first carried out. As a 
standard building block in the imec’s iSIPP25G platform, the ring modulators have a 
bandwidth of 15 GHz at -1 V bias, as shown in Figure 6(a). On the other hand for the transfer 
printed O band PDs the 3 dB bandwidth is measured to be 11.5 GHz in Figure 6(b), with good 
uniformity over the 4 devices.      
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Fig. 10. Measured BER versus received optical power for (a) the upstream data signal, (b) the 
downstream data signal.  

  

Fig. 11. Measured bit error rate of the upstream data signal at 10 Gbit/s with the downstream 
link operational or off.  

5. Conclusion  

In this paper we present a 4 channel transceiver for a point-to-point FTTH network at the 
central office side. The up-stream (O band) receivers were realized by the integration of III-V 
through a transfer printing technique. To our knowledge this is the first time that the transfer-
printing-based integration of pre-fabricated devices on integrated photonic circuits is 
demonstrated. A responsivity of 0.39-0.49 A/W was obtained with four orders of magnitude 
lower responsivity of the C band signal, allowing a low cross talk between upstream and 
downstream data signals. Error free operation for a 27-1 data stream at 10 Gbit/s was realized 
at a received power of 0 dBm and -11 dBm for upstream (without transimpedance amplifier) 
and downstream (with transimpedance amplifier) data signals, respectively. The efficient use 
of III-V material in the integration and the high accuracy alignment of the transfer printing 
system, makes the transfer printing technique promising for high yield, low-cost and wafer 
scale integration of III-V opto-electronic components on silicon photonic integrated circuits.  
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