421 research outputs found

    Drained cyclic capacity of plate anchors in dense sand:Experimental and theoretical observations

    Get PDF
    This paper provides experimental evidence that shows that the drained cyclic capacity of a plate anchor in dry dense sand may be higher than the equivalent monotonic capacity. The experimental data show that when cyclic loading is low relative to the monotonic capacity, increases in the eventual capacity are observed; when the magnitudes of the cyclic loads are closer to the monotonic capacity, no increases in capacity are observed. These responses are explained in the paper using an elasto-plastic macro-element model extended with expandable bounding and memory surfaces that address the increase in strength or stiffness caused by changes in soil density and fabric when the anchor is subject to cyclic loading in dense sand. </jats:p

    Penrose Limits and Spacetime Singularities

    Full text link
    We give a covariant characterisation of the Penrose plane wave limit: the plane wave profile matrix A(u)A(u) is the restriction of the null geodesic deviation matrix (curvature tensor) of the original spacetime metric to the null geodesic, evaluated in a comoving frame. We also consider the Penrose limits of spacetime singularities and show that for a large class of black hole, cosmological and null singularities (of Szekeres-Iyer ``power-law type''), including those of the FRW and Schwarzschild metrics, the result is a singular homogeneous plane wave with profile A(u)∌u−2A(u)\sim u^{-2}, the scale invariance of the latter reflecting the power-law behaviour of the singularities.Comment: 9 pages, LaTeX2e; v2: additional references and cosmetic correction

    Black Hole Remnants and the Information Puzzle

    Full text link
    Magnetically charged dilatonic black holes have a perturbatively infinite ground state degeneracy associated with an infinite volume throat region of the geometry. A simple argument based on causality is given that these states do not have a description as ordinary massive particles in a low-energy effective field theory. Pair production of magnetic black holes in a weak magnetic field is estimated in a weakly-coupled semiclassical expansion about an instanton and found to be finite, despite the infinite degeneracy of states. This suggests that these states may store the information apparently lost in black hole scattering processes.Comment: 16 pages, revision has 5 figures uuencode

    Are Horned Particles the Climax of Hawking Evaporation?

    Full text link
    We investigate the proposal by Callan, Giddings, Harvey and Strominger (CGHS) that two dimensional quantum fluctuations can eliminate the singularities and horizons formed by matter collapsing on the nonsingular extremal black hole of dilaton gravity. We argue that this scenario could in principle resolve all of the paradoxes connected with Hawking evaporation of black holes. However, we show that the generic solution of the model of CGHS is singular. We propose modifications of their model which may allow the scenario to be realized in a consistent manner.Comment: 26 page

    What do community-dwelling Caucasian and South Asian 60–70 year olds think about exercise for fall prevention?

    Get PDF
    Background: strategies to prevent falls often recommend regular exercise. However, 40% of over 50s in the UK report less physical activity than is recommended. Even higher rates of sedentary behaviour have been reported among South Asian older adults

    Background independence in a nutshell

    Full text link
    We study how physical information can be extracted from a background independent quantum system. We use an extremely simple `minimalist' system that models a finite region of 3d euclidean quantum spacetime with a single equilateral tetrahedron. We show that the physical information can be expressed as a boundary amplitude. We illustrate how the notions of "evolution" in a boundary proper-time and "vacuum" can be extracted from the background independent dynamics.Comment: 19 pages, 19 figure

    Nonsingular Lagrangians for Two Dimensional Black Holes

    Get PDF
    We introduce a large class of modifications of the standard lagrangian for two dimensional dilaton gravity, whose general solutions are nonsingular black holes. A subclass of these lagrangians have extremal solutions which are nonsingular analogues of the extremal Reissner-Nordstrom spacetime. It is possible that quantum deformations of these extremal solutions are the endpoint of Hawking evaporation when the models are coupled to matter, and that the resulting evolution may be studied entirely within the framework of the semiclassical approximation. Numerical work to verify this conjecture is in progress. We point out however that the solutions with non-negative mass always contain Cauchy horizons, and may be sensitive to small perturbations.Comment: 27 pages, three figures, RU-92-61. (Replaced version contains some corrections to incorrect equations. The zero temperature extremal geometry (the conjectured end-point of the Hawking evaporation) is not as stated in the previous version, but rather is a nonsingular analogue of the zero temperature M2=Q2M^2 = Q^2 Reissner-Nordstrom space-time.

    Post-landslide soil and vegetation recovery in a dry, montane system is slow and patchy

    Get PDF
    Landslides are common disturbances in forests around the world, and a major threat to human life and property. Landslides are likely to become more common in many areas as storms intensify. Forest vegetation can improve hillslope stability via long, deep rooting across and through failure planes. In the U.S. Rocky Mountains, landslides are infrequent but widespread when they do occur. They are also extremely understudied, with little known about the basic vegetation recovery processes and rates of establishment which restabilize hills. This study presents the first evaluation of post-landslide vegetation recovery on forested landslides in the southern Rocky Mountains. Six years after a major landslide event, the surveyed sites have very little regeneration in initiation zones, even when controlling for soil coverage. Soils are shallower and less nitrogen rich in initiation zones as well. Rooting depth was similar between functional groups regardless of position on the slide, but deep-rooting trees are much less common in initiation zones. A lack of post-disturbance tree regeneration in these lower elevation, warm/dry settings, common across a variety of disturbance types, suggests that complete tree restabilization of these hillslopes is likely to be a slow or non-existent, especially as the climate warms. Replacement by grasses would protect against shallow instabilities but not the deeper mass movement events which threaten life and property
    • 

    corecore