3,026 research outputs found

    Influence of Atmospheric Turbulence on Optical Communications using Orbital Angular Momentum for Encoding

    Get PDF
    We describe an experimental implementation of a free-space 11-dimensional communication system using orbital angular momentum (OAM) modes. This system has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We find that increasing the turbulence leads to a degradation of the channel capacity. We are able to mitigate the effects of turbulence by increasing the spacing between detected OAM modes. This study has implications for high-dimensional quantum key distribution (QKD) systems. We describe the sort of QKD system that could be built using our current technology.Comment: 6 pages, 5 figure

    High-dimensional quantum cryptography with twisted light

    Get PDF
    Quantum key distributions (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field, allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93\%. Through the use of a 7-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment shows that, in addition to having an increased information capacity, QKD systems based on spatial-mode encoding will be more tolerant to errors and thus more robust against eavesdropping attacks

    Integration of subclassification strategies in randomised controlled clinical trials evaluating manual therapy treatment and exercise therapy for non-specific chronic low back pain: a systematic review

    Get PDF
    Background There is lack of evidence for specific treatment interventions for patients with non-specific chronic low back pain (NSCLBP) despite the substantial amount of randomised controlled clinical trials evaluating treatment outcome for this disorder. Hypothesis It has been hypothesised that this vacuum of evidence is caused by the lack of subclassification of the heterogeneous population of patients with chronic low back pain for outcome research.Methods A systematic review with a meta-analysis was undertaken to determine the integration of subclassification strategies with matched interventions in randomised controlled clinical trials evaluating manual therapy treatment and exercise therapy for NSCLBP. A structured search for relevant studies in Embase, Cinahl, Medline, PEDro and the Cochrane Trials Register database, followed by hand searching all relevant studies in English up to December 2008. Results Only 5 of 68 studies (7.4%) subclassified patients beyond applying general inclusion and exclusion criteria. In the few studies where classification and matched interventions have been used, our meta-analysis showed a statistical difference in favour of the classification-based intervention for reductions in pain (p=0.004) and disability (p=0.0005), both for short-term and long-term reduction in pain (p=0.001). Effect sizes ranged from moderate (0.43) for short term to minimal (0.14) for long term. Conclusion A better integration of subclassification strategies in NSCLBP outcome research is needed. We propose the development of explicit recommendations for the use of subclassification strategies and evaluation of targeted interventions in future research evaluating NSCLBP

    Untangling cosmic magnetic fields: Faraday tomography at metre wavelengths with LOFAR

    Get PDF
    14 pages, 6 figures. Accepted for publication in "The Power of Faraday Tomography" special issue of GalaxiesThe technique of Faraday tomography is a key tool for the study ofmagnetised plasmas in the new era of broadband radio-polarisation observations. In particular, observations at metre wavelengths provide significantly better Faraday depth accuracies compared to traditional centimetre-wavelength observations. However, the effect of Faraday depolarisationmakes the polarised signal very challenging to detect at metre wavelengths (MHz frequencies). In this work, Faraday tomography is used to characterise the Faraday rotation properties of polarised sources found in data from the LOFAR Two-Metre Sky Survey (LoTSS). Of the 76 extragalactic polarised sources analysed here, we find that all host a radio-loud AGN (Active Galactic Nucleus). The majority of the sources (~64%) are large FRII radio galaxies with a median projected linear size of 710 kpc and median radio luminosity at 144 MHz of 4 × 10 26 W Hz -1 (with ~13% of all sources having a linear size > 1 Mpc). In several cases, both hotspots are detected in polarisation at an angular resolution of ~20'. One such case allowed a study of intergalactic magnetic fields on scales of 3.4 Mpc. Other detected source types include an FRI radio galaxy and at least eight blazars. Most sources display simple Faraday spectra, but we highlight one blazar that displays a complex Faraday spectrum, with two close peaks in the Faraday dispersion function.Peer reviewe

    The influence of particle surface roughness on elastic stiffness and dynamic response

    Get PDF
    Discrete-element method (DEM) simulations of planar wave propagation are used to examine the effect of particle surface roughness on the stiffness and dynamic response of granular materials. A new contact model that considers particle surface roughness is implemented in the DEM simulations. Face-centred cubic lattice packings and random configurations are used; uniform spheres are considered in both cases to isolate fabric and contact model effects from inertia effects. For the range of values considered here surface roughness caused a significant reduction in stiffness, particularly at lower confining stresses. The simulations confirm that surface roughness effects can at least partially explain the value of the exponent in the relationship between stiffness and mean confining stress for an assembly of spherical particles. Frequency domain analyses showed that the maximum frequency transmitted through the sample is reduced when surface roughness is considered. The assumption of homogeneity of stress and contacts in analytical micromechanical models is shown to lead to an overestimation of stiffness

    Assessing the image quality of pelvic MR images acquired with a flat couch for radiotherapy treatment planning

    Get PDF
    OBJECTIVES: To improve the integration of MRI with radiotherapy treatment planning, our department fabricated a flat couch top for our MR scanner. Setting up using this couch top meant that the patients were physically higher up in the scanner and, posteriorly, a gap was introduced between the patient and radiofrequency coil. METHODS: Phantom measurements were performed to assess the quantitative impact on image quality. A phantom was set up with and without the flat couch insert in place, and measurements of image uniformity and signal to noise were made. To assess clinical impact, six patients with pelvic cancer were recruited and scanned on both couch types. The image quality of pairs of scans was assessed by two consultant radiologists. RESULTS: The use of the flat couch insert led to a drop in image signal to noise of approximately 14%. Uniformity in the anteroposterior direction was affected the most, with little change in right-to-left and feet-to-head directions. All six patients were successfully scanned on the flat couch, although one patient had to be positioned with their arms by their sides. The image quality scores showed no statistically significant change between scans with and without the flat couch in place. CONCLUSION: Although the quantitative performance of the coil is affected by the integration of a flat couch top, there is no discernible deterioration of diagnostic image quality, as assessed by two consultant radiologists. Although the flat couch insert moved patients higher in the bore of the scanner, all patients in the study were successfully scanned
    • …
    corecore