51 research outputs found

    In vitro screening for population variability in chemical toxicity

    Get PDF
    Immortalized human lymphoblastoid cell lines have been used to identify genetic factors affecting differential sensitivities in response to drug treatment. Our objective is to extend the application of such studies to investigative toxicology by assessing inter-individual and population-wide variability and heritability of chemical-induced toxicity phenotypes using cell lines from the Centre d'Etude du Polymorphisme Humain (CEPH) trios assembled by the HapMap Consortium. Cell lines from the CEPH trios were exposed to three concentrations of 14 environmental chemicals and two cellular toxicity response endpoints were assessed. We show that variability of response across the cell lines exists for some, but not all chemicals, and found no evidence for the heritability of toxicity response phenotypes for the chemicals we tested. We then investigated genetic factors contributing to wide variability in response by conducting genome-wide association scans. We conclude that the approach of screening chemicals for toxicity in a genetically-defined, yet variable in vitro human cell-based system is potentially useful for identification of both chemicals and individuals that may be at highest risk, as well as the within-species degree of variability in the population, and genetic loci of interest that potentially contribute this phenomenon.Master of Science in Public Healt

    DVD Versus Physiotherapist-Led Inhaler Education: A Randomised Controlled Trial

    Get PDF
    Correct technique with inhalers is vital for therapeutic effect. Efficacy of DVD inhaler instruction was investigated. Secondary aims were to examine feasibility of an inhaler technique outcome measure, and to compare knowledge and self-efficacy after DVD or individual education. This was a randomised controlled trial conducted in a regional hospital paediatric ward, involving new or existing paediatric inhaler users. Inhaler technique was assessed pre-education in existing inhaler users. Participants were then randomised to message equivalent education by DVD or individually with a physiotherapist. Inhaler technique, self-efficacy and knowledge were assessed immediately post- and three months after education. Twenty one participants received DVD or individual education. There were no significant differences between groups for technique, self-efficacy or knowledge at any time. The outcome measure was feasible for use in a research study. DVD education was equivalent to individual instruction to teach parents how to use inhalers with their child

    Public Infrastructure Disparities and the Microbiological and Chemical Safety of Drinking and Surface Water Supplies in a Community Bordering a Landfill

    Get PDF
    The historically African-American Rogers-Eubanks community straddles unincorporated boundaries of two municipalities in Orange County, North Carolina, and predates a regional landfill sited along its border in 1972. Community members from the Rogers-Eubanks Neighborhood Association (RENA), concerned about deterioration of private wells and septic systems and a lack of public drinking water and sewer services, implemented a community-driven research partnership with university scientists and community-based organizations to investigate water and sewer infrastructure disparities and the safety of drinking and surface water supplies. RENA drafted memoranda of agreement with partners and trained community monitors to collect data (inventory households, map water and sewer infrastructure, administer household water and sewer infrastructure surveys, and collect drinking and surface water samples). Respondents to the surveys reported pervasive signs of well vulnerability (100%) and septic system failure (68%). Each 100-m increase in distance from the landfill was associated with a 600 most probable number/100 mL decrease in enterococci concentrations in surface water (95% confidence interval = −1106, −93). Pervasive private household water and sewer infrastructure failures and poor water quality were identified in this community bordering a regional landfill, providing evidence of a need for improved water and sanitation services

    Information Transmission in Cercal Giant Interneurons Is Unaffected by Axonal Conduction Noise

    Get PDF
    What are the fundamental constraints on the precision and accuracy with which nervous systems can process information? One constraint must reflect the intrinsic “noisiness” of the mechanisms that transmit information between nerve cells. Most neurons transmit information through the probabilistic generation and propagation of spikes along axons, and recent modeling studies suggest that noise from spike propagation might pose a significant constraint on the rate at which information could be transmitted between neurons. However, the magnitude and functional significance of this noise source in actual cells remains poorly understood. We measured variability in conduction time along the axons of identified neurons in the cercal sensory system of the cricket Acheta domesticus, and used information theory to calculate the effects of this variability on sensory coding. We found that the variability in spike propagation speed is not large enough to constrain the accuracy of neural encoding in this system

    Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing

    Get PDF
    The inactivation of starch branching IIb (SBEIIb) in rice is traditionally associated with elevated apparent amylose content, increased peak gelatinization temperature, and a decreased proportion of short amylopectin branches. To elucidate further the structural and functional role of this enzyme, the phenotypic effects of down-regulating SBEIIb expression in rice endosperm were characterized by artificial microRNA (amiRNA) and hairpin RNA (hp-RNA) gene silencing. The results showed that RNA silencing of SBEIIb expression in rice grains did not affect the expression of other major isoforms of starch branching enzymes or starch synthases. Structural analyses of debranched starch showed that the doubling of apparent amylose content was not due to an increase in the relative proportion of amylose chains but instead was due to significantly elevated levels of long amylopectin and intermediate chains. Rices altered by the amiRNA technique produced a more extreme starch phenotype than those modified using the hp-RNA technique, with a greater increase in the proportion of long amylopectin and intermediate chains. The more pronounced starch structural modifications produced in the amiRNA lines led to more severe alterations in starch granule morphology and crystallinity as well as digestibility of freshly cooked grains. The potential role of attenuating SBEIIb expression in generating starch with elevated levels of resistant starch and lower glycaemic index is discussed

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Large-scale discovery of novel genetic causes of developmental disorders

    Get PDF
    Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders1, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach2 to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing3,4,5,6,7,8,9,10,11 and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders

    Prevalence, phenotype and architecture of developmental disorders caused by de novo mutation: The Deciphering Developmental Disorders Study

    Get PDF
    Individuals with severe, undiagnosed developmental disorders (DDs) are enriched for damaging de novo mutations (DNMs) in developmentally important genes. We exome sequenced 4,293 families with individuals with DDs, and meta-analysed these data with published data on 3,287 individuals with similar disorders. We show that the most significant factors influencing the diagnostic yield of de novo mutations are the sex of the affected individual, the relatedness of their parents and the age of both father and mother. We identified 94 genes enriched for damaging de novo mutation at genome-wide significance (P < 7 × 10−7), including 14 genes for which compelling data for causation was previously lacking. We have characterised the phenotypic diversity among these genetic disorders. We demonstrate that, at current cost differentials, exome sequencing has much greater power than genome sequencing for novel gene discovery in genetically heterogeneous disorders. We estimate that 42% of our cohort carry pathogenic DNMs (single nucleotide variants and indels) in coding sequences, with approximately half operating by a loss-of-function mechanism, and the remainder resulting in altered-function (e.g. activating, dominant negative). We established that most haplo insufficient developmental disorders have already been identified, but that many altered-function disorders remain to be discovered. Extrapolating from the DDD cohort to the general population, we estimate that developmental disorders caused by DNMs have an average birth prevalence of 1 in 213 to 1 in 448 (0.22-0.47% of live births), depending on parental age

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    corecore