691 research outputs found

    Challenges for standardization of Clostridium difficile typing methods

    Get PDF
    Typing of Clostridium difficile facilitates understanding of the epidemiology of the infection. Some evaluations have shown that certain strain types (for example, ribotype 027) are more virulent than others and are associated with worse clinical outcomes. Although restriction endonuclease analysis (REA) and pulsed-field gel electrophoresis have been widely used in the past, PCR ribotyping is the current method of choice for typing of C. difficile. However, global standardization of ribotyping results is urgently needed. Whole-genome sequencing of C. difficile has the potential to provide even greater epidemiologic information than ribotyping

    Demography and disorders of German Shepherd Dogs under primary veterinarycare in the UK

    Get PDF
    The German Shepherd Dog (GSD) has been widely used for a variety of working roles. However, concerns for the health and welfare of the GSD have been widely aired and there is evidence that breed numbers are now in decline in the UK. Accurate demographic and disorder data could assist with breeding and clinical prioritisation. The VetCompassTM Programme collects clinical data on dogs under primary veterinary care in the UK. This study included all VetCompassTM dogs under veterinary care during 2013. Demographic, mortality and clinical diagnosis data on GSDs were extracted and reported

    Photoantimicrobial Biohybrids by Supramolecular Immobilization of Cationic Phthalocyanines onto Cellulose Nanocrystals

    Full text link
    This is the peer-reviewed version of the following article: Anaya‐Plaza, E., van de Winckel, E., Mikkilä, J., Malho, J. M., Ikkala, O., Gulías, O., ... & Kostiainen, M. A. (2017). Photoantimicrobial biohybrids by supramolecular immobilization of cationic phthalocyanines onto cellulose nanocrystals. Chemistry–A European Journal, 23(18), 4320-4326., which has been published in final form at https://doi.org/10.1002/chem.201605285. This article may be used for non-commercial purposes in accordance with Wiley-VCH Terms and Conditions for Self-ArchivingThe development of photoactive and biocompatible nanostructures is a highly desirable goal to address the current threat of antibiotic resistance. Here, we describe a novel supramolecular biohybrid nanostructure based on the non-covalent immobilization of cationic zinc phthalocyanine (ZnPc) derivatives onto unmodified cellulose nanocrystals (CNC), following an easy and straightforward protocol, in which binding is driven by electrostatic interactions. These non-covalent biohybrids show strong photodynamic activity against S. aureus and E. coli, representative examples of Gram-positive and Gram-negative bacteria, respectively, and C. albicans, a representative opportunistic fungal pathogen, outperforming the free ZnPc counterparts and related nanosystems in which the photosensitizer is covalently linked to the CNC surfaceA.d.l.E. acknowledges a Ramón y Cajal contract from the Spanish Ministry of Economy (MINECO). The work at Madrid was supported by the EU [SO2S (FP7‐PEOPLE‐2012‐ITN, 316975); and CosmoPHOS‐nano (FP7‐NMP‐2012‐6, 310337‐2)], the Spanish MINECO [CTQ‐2014‐52869‐P (T.T.) and CTQ‐2014‐53673‐P (A.d.l.E.)] and Comunidad de Madrid [FOTOCARBON (S2013/MIT‐2841)]. J.M., V.L., and M.A.K. acknowledge support through the Emil Aaltonen Foundation and the Academy of Finland (grants 267497, 273645 and 263504). This work was supported by the Academy of Finland through its Centers of Excellence Programme (2014–2019) and made use of the Aalto University Nanomicroscopy Centre (Aalto NMC). The work in Barcelona was supported by the Spanish MINECO (grant CTQ2013‐48767‐C3‐1‐R). R.B.‐O. thanks the European Social Funds and the SUR del DEC de la Generalitat de Catalunya for his predoctoral fellowship (2016 FI B1 00021)

    Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD

    Get PDF
    The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria

    Co-Targeting PIM Kinase and PI3K/mTOR in NSCLC

    Get PDF
    PIM kinases are constitutively active proto-oncogenic serine/threonine kinases that play a role in cell cycle progression, metabolism, inflammation and drug resistance. PIM kinases interact with and stabilize p53, c-Myc and parallel signaling pathway PI3K/Akt. This study evaluated PIM kinase expression in NSCLC and in response to PI3K/mTOR inhibition. It investigated a novel preclinical PI3K/mTOR/PIM inhibitor (IBL-301) in vitro and in patient-derived NSCLC tumor tissues. Western blot analysis confirmed PIM1, PIM2 and PIM3 are expressed in NSCLC cell lines and PIM1 is a marker of poor prognosis in patients with NSCLC. IBL-301 decreased PIM1, c-Myc, pBAD and p4EBP1 (Thr37/46) and peIF4B (S406) protein levels in-vitro and MAP kinase, PI3K-Akt and JAK/STAT pathways in tumor tissue explants. IBL-301 significantly decreased secreted pro-inflammatory cytokine MCP-1. Altered mRNA expression, including activated PIM kinase and c-Myc, was identified in Apitolisib resistant cells (H1975GR) by an IL-6/STAT3 pathway array and validated by Western blot. H1975GR cells were more sensitive to IBL-301 than parent cells. A miRNA array identified a dysregulated miRNA signature of PI3K/mTOR drug resistance consisting of regulators of PIM kinase and c-Myc (miR17-5p, miR19b-3p, miR20a-5p, miR15b-5p, miR203a, miR-206). Our data provides a rationale for co-targeting PIM kinase and PI3K-mTOR to improve therapeutic response in NSCLC

    Propylene glycol inactivates respiratory viruses and prevents airborne transmission

    Get PDF
    Viruses are vulnerable as they transmit between hosts, and we aimed to exploit this critical window. We found that the ubiquitous, safe, inexpensive and biodegradable small molecule propylene glycol (PG) has robust virucidal activity. Propylene glycol rapidly inactivates a broad range of viruses including influenza A, SARS-CoV-2 and rotavirus and reduces disease burden in mice when administered intranasally at concentrations commonly found in nasal sprays. Most critically, vaporised PG efficiently abolishes influenza A virus and SARS-CoV-2 infectivity within airborne droplets, potently preventing infection at levels well below those tolerated by mammals. We present PG vapour as a first-in-class non-toxic airborne virucide that can prevent transmission of existing and emergent viral pathogens, with clear and immediate implications for public health

    The house dust mite allergen Der p 5 binds lipid ligands and stimulates airway epithelial cells through a TLR2‐dependent pathway

    Get PDF
    Background: Protein crystallographic studies suggest that the house dust mite (HDM) allergen Der p 5 potentially interacts with hydrophobic ligands. Der p 5, in association with its ligand(s), might therefore trigger innate immune signalling pathways in the airway epithelium and influence the initiation of the HDM‐allergic response. Objective: We investigated the lipid binding propensities of recombinant (r)Der p 5 and characterized the signalling pathways triggered by the allergen in airway epithelial cells. Methods: rDer p 5 was produced in Pichia pastoris and characterized by mass spectrometry, multi‐angle light scattering and circular dichroism. Its interactions with hydrophobic ligands were investigated in fluorescence‐based lipid binding assays and in‐silico docking simulations. Innate immune signalling pathways triggered by rDer p 5 were investigated in airway epithelial cell activation assays in vitro. Results: Biophysical analysis showed that rDer p 5 was monomeric and adopted a similar α‐helix‐rich fold at both physiological and acidic pH. Spectrofluorimetry experiments showed that rDer p 5 is able to selectively bind lipid ligands, but only under mild acidic pH conditions. Computer‐based docking simulations identified potential binding sites for these ligands. This allergen, with putatively associated lipid(s), triggered the production of IL‐8 in respiratory epithelial cells through a TLR2‐, NF‐kB‐ and MAPK‐dependent signalling pathway. Conclusions and Clinical Relevance: Despite the fact that Der p 5 represents a HDM allergen of intermediate prevalence, our findings regarding its lipid binding and activation of TLR2 indicate that it could participate in the initiation of the HDM‐allergic state

    Gene-specific repair of Pt/DNA lesions and induction of apoptosis by the oral platinum drug JM216 in three human ovarian carcinoma cell lines sensitive and resistant to cisplatin

    Get PDF
    JM216, an oral platinum drug entering into phase III clinical trial, exhibited comparable cytotoxicity to cisplatin in three human ovarian carcinoma cell lines: the sensitive (CH1), acquired resistant (CH1cisR) and intrinsically resistant (SKOV-3). Platinum accumulation and binding to DNA were similar in each of the three cell lines at equimolar doses, indicating that the resistant cell lines could tolerate higher intracellular platinum levels and platinum bound to DNA at IC50 concentrations of drug. Comparison with cisplatin demonstrated that intracellular platinum levels were marginally higher with JM216, but that platinum binding to DNA was similar for the two drugs in each of the cell lines. Each of the cell lines exhibited an ability to repair JM216 induced platinum/DNA lesions in the N-ras gene (gene-specific repair) at equitoxic concentrations of drug. However, this occurred to a greater extent in the two resistant cell lines such that by 24 h the CH1cisR and SKOV-3 had removed 72% and 67% respectively compared with approximately 32% for the CH1. Reduced gene-specific repair capacity in CH1 cells was also seen following incubation with 25 μM (or 5 μM – 2 × IC50) cisplatin, whereas the CH1cisR and SKOV-3 cell lines were repair proficient. JM216 induced apoptosis in the three cell lines following a 2h incubation with 2 × the IC50 of drug. Fluorescent microscopy of cells stained with propidium iodide showed that the detached cell population displayed typical apoptotic nuclei. Furthermore, field inversion gel electrophoresis demonstrated the presence of DNA fragments approximately 23–50 kb in size, indicative of apoptosis, in the detached cells. JM216 induced an S phase slow down in each of the three cell lines accompanied by a G2 block in the CH1 pair. Incubation with this concentration of JM216 also resulted in the induction of p53 in the CH1 and CH1cisR. These studies suggest that the relative sensitivity of the CH1 cell line to cisplatin and JM216 is at least partly attributable to a deficiency in gene-specific repair. The oral platinum drug, JM216, exerts its cytotoxic effects through the induction of apoptosis following a slow-down in S phase in both the sensitive and resistant lines. © 1999 Cancer Research Campaig

    Toward safer thanatopraxy cares: formaldehyde-releasers use.

    Get PDF
    Human cadavers constitute very useful educational tools to teach anatomy in medical scholarship and related disciplines such as physiology, for example. However, as biological material, human body is subjected to decay. Thanatopraxy cares such as embalming have been developed to slow down and inhibit this decay, but the formula used for the preservation fluids are mainly formaldehyde (FA)-based. Very recently, other formulas were developed in order to replace FA, and to avoid its toxicity leading to important environmental and professional exposure concerns. However, these alternative FA-free fluids are still not validated or commercialized, and their efficiency is still under discussion. In this context, the use of FA-releasing substances, already used in the cosmetics industry, may offer interesting alternatives in order to reduce professional exposures to FA. Simultaneously, the preservation of the body is still guaranteed by FA generated over time from FA-releasers. The aim of this review is to revaluate the use of FA in thanatopraxy cares, to present its benefits and disadvantages, and finally to propose an alternative to reduce FA professional exposure during thanatopraxy cares thanks to FA-releasers use
    corecore