35 research outputs found

    Glutamate cycling may drive organic anion transport on the basal membrane of human placental syncytiotrophoblast

    No full text
    The organic anion transporter OAT4 (SLC22A11) and organic anion transporting polypeptide OATP2B1 (SLCO2B1) are expressed in the basal membrane of the placental syncytiotrophoblast. These transporters mediate exchange whereby uptake of one organic anion is coupled to efflux of a counter-ion. In placenta, these exchangers mediate placental uptake of substrates for oestrogen synthesis as well as clearing waste products and xenobiotics from the fetal circulation. However, the identity of the counter-ion driving this transport in the placenta, and in other tissues, is unclear. While glutamate is not a known OAT4 or OATP2B1 substrate, we propose that its high intracellular concentration has the potential to drive accumulation of substrates from the fetal circulation. In the isolated perfused placenta, glutamate exchange was observed between the placenta and the fetal circulation. This exchange could not be explained by known glutamate exchangers. However, glutamate efflux was trans-stimulated by an OAT4 and OATP2B1 substrate (bromosulphothalein). Exchange of glutamate for bromosulphothalein was only observed when glutamate reuptake was inhibited (by addition of aspartate). To determine if OAT4 and/or OATP2B1 mediate glutamate exchange, uptake and efflux of glutamate were investigated in Xenopus laevis oocytes. Our data demonstrate that in Xenopus oocytes expressing either OAT4 or OATP2B1 efflux of intracellular [14C]glutamate could be stimulated by conditions including extracellular glutamate (OAT4), estrone-sulphate and bromosulphothalein (both OAT4 and OATP2B1) or pravastatin (OATP2B1). Cycling of glutamate across the placenta involving efflux via OAT4 and OATP2B1 and subsequent reuptake will drive placental uptake of organic anions from the fetal circulation.<br/

    AMMECR1: a single point mutation causes developmental delay, midface hypoplasia and elliptocytosis

    No full text
    Background: Deletions in the Xq22.3–Xq23 region, inclusive of COL4A5, have been associated with a contiguous gene deletion syndrome characterised by Alport syndrome with intellectual disability (Mental retardation), Midface hypoplasia and Elliptocytosis (AMME). The extrarenal biological and clinical significance of neighbouring genes to the Alport locus has been largely speculative. We sought to discover a genetic cause for two half-brothers presenting with nephrocalcinosis, early speech and language delay and midface hypoplasia with submucous cleft palate and bifid uvula.Methods: Whole exome sequencing was undertaken on maternal half-siblings. In-house genomic analysis included extraction of all shared variants on the X chromosome in keeping with X-linked inheritance. Patient-specific mutants were transfected into three cell lines and microscopically visualised to assess the nuclear expression pattern of the mutant protein.Results: In the affected half-brothers, we identified a hemizygous novel non-synonymous variant of unknown significance in AMMECR1 (c.G530A; p.G177D), a gene residing in the AMME disease locus. Transfected cell lines with the p.G177D mutation showed aberrant nuclear localisation patterns when compared with the wild type. Blood films revealed the presence of elliptocytes in the older brother.Conclusions: Our study shows that a single missense mutation in AMMECR1 causes a phenotype of midface hypoplasia, mild intellectual disability and the presence of elliptocytes, previously reported as part of a contiguous gene deletion syndrome. Functional analysis confirms mutant-specific protein dysfunction. We conclude that AMMECR1 is a critical gene in the pathogenesis of AMME, causing midface hypoplasia and elliptocytosis and contributing to early speech and language delay, infantile hypotonia and hearing loss, and may play a role in dysmorphism, nephrocalcinosis and submucous cleft palate.<br/

    Obesity in adults: a 2022 adapted clinical practice guideline for Ireland

    Get PDF
    This Clinical Practice Guideline (CPG) for the management of obesity in adults in Ireland, adapted from the Canadian CPG, defines obesity as a complex chronic disease characterised by excess or dysfunctional adiposity that impairs health. The guideline reflects substantial advances in the understanding of the determinants, pathophysiology, assessment, and treatment of obesity. It shifts the focus of obesity management toward improving patient-centred health outcomes, functional outcomes, and social and economic participation, rather than weight loss alone. It gives recommendations for care that are underpinned by evidence-based principles of chronic disease management; validate patients' lived experiences; move beyond simplistic approaches of "eat less, move more" and address the root drivers of obesity. People living with obesity face substantial bias and stigma, which contribute to increased morbidity and mortality independent of body weight. Education is needed for all healthcare professionals in Ireland to address the gap in skills, increase knowledge of evidence-based practice, and eliminate bias and stigma in healthcare settings. We call for people living with obesity in Ireland to have access to evidence-informed care, including medical, medical nutrition therapy, physical activity and physical rehabilitation interventions, psychological interventions, pharmacotherapy, and bariatric surgery. This can be best achieved by resourcing and fully implementing the Model of Care for the Management of Adult Overweight and Obesity. To address health inequalities, we also call for the inclusion of obesity in the Structured Chronic Disease Management Programme and for pharmacotherapy reimbursement, to ensure equal access to treatment based on health-need rather than ability to pay

    Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K2P) channels

    Get PDF
    Two-pore domain potassium (K2P) channels are implicated in an array of physiological and pathophysiological roles. As a result of their biophysical properties, these channels produce a background leak K(+) current which has a direct effect on cellular membrane potential and activity. The regulation of potassium leak from cells through K2P channels is of critical importance to cell function, development and survival. Controlling the cell surface expression of these channels is one mode to regulate their function and is achieved through a balance between regulated channel delivery to and retrieval from the cell surface. Here, we explore the modes of retrieval of K2P channels from the plasma membrane and observe that K2P channels are endocytosed in both a clathrin-mediated and clathrin-independent manner. K2P channels use a variety of pathways and show altered internalisation and sorting in response to external cues. These pathways working in concert, equip the cell with a range of approaches to maintain steady state levels of channels and to respond rapidly should changes in channel density be required

    Altered expression of two-pore domain potassium (K2P) channels in cancer

    Get PDF
    Potassium channels have become a focus in cancer biology as they play roles in cell behaviours associated with cancer progression, including proliferation, migration and apoptosis. Two-pore domain (K2P) potassium channels are background channels which enable the leak of potassium ions from cells. As these channels are open at rest they have a profound effect on cellular membrane potential and subsequently the electrical activity and behaviour of cells in which they are expressed. The K2P family of channels has 15 mammalian members and already 4 members of this family (K2P2.1, K2P3.1, K2P9.1, K2P5.1) have been implicated in cancer. Here we examine the expression of all 15 members of the K2P family of channels in a range of cancer types. This was achieved using the online cancer microarray database, Oncomine (www.oncomine.org). Each gene was examined across 20 cancer types, comparing mRNA expression in cancer to normal tissue. This analysis revealed all but 3 K2P family members (K2P4.1, K2P16.1, K2P18.1) show altered expression in cancer. Overexpression of K2P channels was observed in a range of cancers including breast, leukaemia and lung while more cancers (brain, colorectal, gastrointestinal, kidney, lung, melanoma, oesophageal) showed underexpression of one or more channels. K2P1.1, K2P3.1, K2P12.1, were overexpressed in a range of cancers. While K2P1.1, K2P3.1, K2P5.1, K2P6.1, K2P7.1 and K2P10.1 showed significant underexpression across the cancer types examined. This analysis supports the view that specific K2P channels may play a role in cancer biology. Their altered expression together with their ability to impact the function of other ion channels and their sensitivity to environmental stimuli (pO2, pH, glucose, stretch) makes understanding the role these channels play in cancer of key importance

    O2 Sensing by Airway Chemoreceptor-derived cells protein kinase C activation reveals functional evidence for involvement of NADPH oxidase

    No full text
    Accumulating evidence suggests that neuroepithelial bodies are airway O2 sensors. Recently, we have established the H-146 small cell lung carcinoma line as a suitable model to study the biochemical basis of neuroepithelial body cell chemotransduction. Here we explore the possibility that hypoxic modulation of K+ channels is intimately linked to activity of NADPH oxidase. Graded hypoxia caused graded inhibition of whole cell K+ currents, which correlated well with membrane depolarization. Pretreatment with the phorbol ester, 12-O-tetradecanoyl (TPA), inhibited K+ currents at all potentials. Although 4α-phorbol 12,13-didecanoate and TPA in the presence of bisindolylmaleimide were also able to depress K+ currents, only TPA could significantly ameliorate hypoxic depression of these currents. Thus, protein kinase C (PKC) activation modulates the sensitivity of these cells to changes inpO2. Furthermore, because the addition of H2O2, a downstream product of NADPH oxidase, could only activate K+ currents during hypoxia (when endogenous H2O2 production is suppressed), it appears likely that PKC modulates the affinity of NADPH oxidase for O2 potentially via phosphorylation of the p47phox subunit, which is present in these cells. These data show that PKC is an important regulator of the O2-transduction pathway and suggests that NADPH oxidase represents a significant component of the airway O2sensor

    Acid sensitive background potassium channels K2p3.1 and K2p9.1 undergo rapid dynamin-dependent endocytosis

    No full text
    Acid-sensitive, two-pore domain potassium channels, K2p3.1 and K2p9.1, are implicated in cardiac and nervous tissue responses to hormones, neurotransmitters and drugs. K2p3.1 and K2p9.1 leak potassium from the cell at rest and directly impact membrane potential. Hence altering channel number on the cell surface drives changes in cellular electrical properties. The rate of K2p3.1 and K2p9.1 delivery to and recovery from the plasma membrane determines both channel number at the cell surface and potassium leak from cells. This study examines the endocytosis of K2p3.1 and K2p9.1. Plasma membrane biotinylation was used to follow the fate of internalized GFP-tagged rat K2p3.1 and K2p9.1 transiently expressed in HeLa cells. Confocal fluorescence images were analyzed using Imaris software, which revealed that both channels are endocytosed by a dynamin-dependent mechanism and over the course of 60 min, move progressively toward the nucleus. Endogenous endocytosis of human K2p3.1 and K2p9.1 was examined in the lung carcinoma cell line, A549. Endogenous channels are endocytosed over a similar time-scale to the channels expressed transiently in HeLa cells. These findings both validate the use of recombinant systems and identify an endogenous model system in which K2p3.1 and K2p9.1 trafficking can be further studied

    N-glycosylation-dependent control of functional expression of background potassium channels K2P3.1 and K2P9.1

    No full text
    Two-pore domain potassium (K2P) channels play fundamental roles in cellular processes by enabling a constitutive leak of potassium from cells in which they are expressed, thus influencing cellular membrane potential and activity. Hence, regulation of these channels is of critical importance to cellular function. A key regulatory mechanism of K2P channels is the control of their cell surface expression. Membrane protein delivery to and retrieval from the cell surface is controlled by their passage through the secretory and endocytic pathways and post-translational modifications regulate their progression through these pathways. All but one of the K2P channels possess consensus N-linked glycosylation sites and here we demonstrate that the conserved putative N-glycosylation site in K2P3.1 and K2P9.1 is a glycan acceptor site. Patch-clamp analysis revealed that disruption of channel glycosylation reduced K2P3.1 current, and flow cytometry was instrumental in attributing this to a decreased number of channels on the cell surface. Similar findings were observed when cells were cultured in reduced glucose concentrations. Disruption of N-linked glycosylation has less effect on K2P9.1, with a small reduction in number of channels on the surface observed, but no functional implications detected. As non-glycosylated channels appear to pass through the secretory pathway in a manner comparable to glycosylated channels, evidence presented here suggests that the decreased number of non-glycosylated K2P3.1 channels on the cell surface may be due to their decreased stability
    corecore